Menu Close

Question-169631




Question Number 169631 by MaxiMaths last updated on 05/May/22
Commented by MaxiMaths last updated on 05/May/22
any way to find the function f ???
anywaytofindthefunctionf???
Commented by mr W last updated on 05/May/22
you meant −4 at x=−1?
youmeant4atx=1?
Commented by mr W last updated on 05/May/22
infinite possibilities.  example f(x)=−((14)/9)((x^3 /3)−(x^2 /2)−2x)−((59)/(27))
infinitepossibilities.examplef(x)=149(x33x222x)5927
Commented by mr W last updated on 05/May/22
Answered by mr W last updated on 05/May/22
f′(x)=g(x)(x+1)(x−2)  f(x)=∫g(x)(x+1)(x−2)+C  f(−1)=−4, f(2)=3  ⇒there are infinite possibilties for  g(x) and C.    the most simple case is   g(x)=a=constant.    f′(x)=a(x+1)(x−2)=a(x^2 −x−2)  f(x)=a((x^3 /3)−(x^2 /2)−2x)+b  f(−1)=a(−(1/3)−(1/2)+2)+b=−4  ⇒(7/6)a+b=−4  f(2)=a((8/3)−(4/2)−4)+b=3  ⇒−((10)/3)a+b=3  ⇒a=−((14)/9)  ⇒b=−((59)/(27))  ⇒f(x)=−((14)/9)((x^3 /3)−(x^2 /2)−2x)−((59)/(27))
f(x)=g(x)(x+1)(x2)f(x)=g(x)(x+1)(x2)+Cf(1)=4,f(2)=3thereareinfinitepossibiltiesforg(x)andC.themostsimplecaseisg(x)=a=constant.f(x)=a(x+1)(x2)=a(x2x2)f(x)=a(x33x222x)+bf(1)=a(1312+2)+b=476a+b=4f(2)=a(83424)+b=3103a+b=3a=149b=5927f(x)=149(x33x222x)5927
Commented by MaxiMaths last updated on 06/May/22
waoh ! good !
waoh!good!

Leave a Reply

Your email address will not be published. Required fields are marked *