Menu Close

Question-169658




Question Number 169658 by Tawa11 last updated on 05/May/22
Commented by mr W last updated on 05/May/22
frictional force=active force applied  on carton  ⇒frictional force =150 N  Answer A is correct.
$${frictional}\:{force}={active}\:{force}\:{applied} \\ $$$${on}\:{carton} \\ $$$$\Rightarrow{frictional}\:{force}\:=\mathrm{150}\:{N} \\ $$$${Answer}\:{A}\:{is}\:{correct}. \\ $$
Commented by Tawa11 last updated on 05/May/22
Ohh, God bless you sir.
$$\mathrm{Ohh},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by kapoorshah last updated on 06/May/22
frictional force = coefficient of friction × normal force                                     = η_k  × (m × g)                                     = 0.4 × 51 × 9.8                                     = 199.92 N  since frictional force is greater than the  sliding force the carton is not moving.   so the frictional force = η_s  × m × g                                                   = 0.5 × 51 × 9.8                                                   = 249.9 N                                                   ≈ 250 N  answer : C
$${frictional}\:{force}\:=\:{coefficient}\:{of}\:{friction}\:×\:{normal}\:{force} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\eta_{{k}} \:×\:\left({m}\:×\:{g}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{0}.\mathrm{4}\:×\:\mathrm{51}\:×\:\mathrm{9}.\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{199}.\mathrm{92}\:{N} \\ $$$${since}\:{frictional}\:{force}\:{is}\:{greater}\:{than}\:{the} \\ $$$${sliding}\:{force}\:{the}\:{carton}\:{is}\:{not}\:{moving}.\: \\ $$$${so}\:{the}\:{frictional}\:{force}\:=\:\eta_{{s}} \:×\:{m}\:×\:{g} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{0}.\mathrm{5}\:×\:\mathrm{51}\:×\:\mathrm{9}.\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{249}.\mathrm{9}\:{N} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\approx\:\mathrm{250}\:{N} \\ $$$${answer}\::\:{C} \\ $$
Commented by mr W last updated on 06/May/22
as far as the carton doesn′t move,  there act two forces on the carton  in horizontal direction:  the active force F=150 N and  the reactive force which is the  friction force f .   since both forces are in equilibrium,   they must be of same size, but opposite   in the direction, i.e.  f=F=150 N. ⇒Answer A.  certainly f must be smaller than  μ_s N=μ_s mg=0.5×51×9.81=250 N,  otherwise the carton begins to move.  since f=150<250, it means that the  carton really doesn′t move.
$${as}\:{far}\:{as}\:{the}\:{carton}\:{doesn}'{t}\:{move}, \\ $$$${there}\:{act}\:{two}\:{forces}\:{on}\:{the}\:{carton} \\ $$$${in}\:{horizontal}\:{direction}: \\ $$$${the}\:{active}\:{force}\:{F}=\mathrm{150}\:{N}\:{and} \\ $$$${the}\:{reactive}\:{force}\:{which}\:{is}\:{the} \\ $$$${friction}\:{force}\:{f}\:.\: \\ $$$${since}\:{both}\:{forces}\:{are}\:{in}\:{equilibrium},\: \\ $$$${they}\:{must}\:{be}\:{of}\:{same}\:{size},\:{but}\:{opposite}\: \\ $$$${in}\:{the}\:{direction},\:{i}.{e}. \\ $$$${f}={F}=\mathrm{150}\:{N}.\:\Rightarrow{Answer}\:{A}. \\ $$$${certainly}\:{f}\:{must}\:{be}\:{smaller}\:{than} \\ $$$$\mu_{{s}} {N}=\mu_{{s}} {mg}=\mathrm{0}.\mathrm{5}×\mathrm{51}×\mathrm{9}.\mathrm{81}=\mathrm{250}\:{N}, \\ $$$${otherwise}\:{the}\:{carton}\:{begins}\:{to}\:{move}. \\ $$$${since}\:{f}=\mathrm{150}<\mathrm{250},\:{it}\:{means}\:{that}\:{the} \\ $$$${carton}\:{really}\:{doesn}'{t}\:{move}. \\ $$
Commented by kapoorshah last updated on 06/May/22
the answer is C
$${the}\:{answer}\:{is}\:{C} \\ $$
Commented by mr W last updated on 06/May/22
then you should explain how the  following is true:
$${then}\:{you}\:{should}\:{explain}\:{how}\:{the} \\ $$$${following}\:{is}\:{true}: \\ $$
Commented by mr W last updated on 06/May/22
Commented by Tawa11 last updated on 06/May/22
Sir mrW. I understand your solution since the time you solved it.  The carton does not move, then   f  =  f_r    =   150N.  God bless you sir.
$$\mathrm{Sir}\:\mathrm{mrW}.\:\mathrm{I}\:\mathrm{understand}\:\mathrm{your}\:\mathrm{solution}\:\mathrm{since}\:\mathrm{the}\:\mathrm{time}\:\mathrm{you}\:\mathrm{solved}\:\mathrm{it}. \\ $$$$\mathrm{The}\:\mathrm{carton}\:\mathrm{does}\:\mathrm{not}\:\mathrm{move},\:\mathrm{then}\:\:\:\mathrm{f}\:\:=\:\:\mathrm{f}_{\mathrm{r}} \:\:\:=\:\:\:\mathrm{150N}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 06/May/22
at kapoorshah sir. Thanks for your time.  I reason like you before, but am sure  250N is not correct.  That was why I posted the question to the forum.  And sir  mrW  has cleared by doubt.  [Ans  =  150N]
$$\mathrm{at}\:\mathrm{kapoorshah}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}. \\ $$$$\mathrm{I}\:\mathrm{reason}\:\mathrm{like}\:\mathrm{you}\:\mathrm{before},\:\mathrm{but}\:\mathrm{am}\:\mathrm{sure}\:\:\mathrm{250N}\:\mathrm{is}\:\mathrm{not}\:\mathrm{correct}. \\ $$$$\mathrm{That}\:\mathrm{was}\:\mathrm{why}\:\mathrm{I}\:\mathrm{posted}\:\mathrm{the}\:\mathrm{question}\:\mathrm{to}\:\mathrm{the}\:\mathrm{forum}. \\ $$$$\mathrm{And}\:\mathrm{sir}\:\:\mathrm{mrW}\:\:\mathrm{has}\:\mathrm{cleared}\:\mathrm{by}\:\mathrm{doubt}.\:\:\left[\mathrm{Ans}\:\:=\:\:\mathrm{150N}\right] \\ $$
Commented by mr W last updated on 06/May/22
something elementary about friction:  before an object moves, the  friction is called static friction. it  is NOT a constant force! it is just a  reaction force. if you don′t apply  a force an the object to attempt to  move it, the friction is zero. as far  as the force you are applying on it  is less than the maximal possible  static friction, which is calculated  by f_(max) =μ_(static) N, the object doesn′t  move and the friction force f which  is actually acting on the object is   always equal to the active force F you  are applying on the object, i.e. f=F.    when you increase the active force F  und reach the maximal possible  static friction force f_(max) =μ_(static) N,  the object begins to move. once an  object moves, there acts always a  friction force on the object, this  friction is called kinetic friction,  which is calculated by f_(kinetic) =μ_(kinetic) N.  it is always there and is constant, as  far as the object moves. the   maximal static friction which must  be overcome to make an object move  is  larger than the kinetic friction.   we can experience this in our  daily life: to make an object to start  to move is more hard than just to  keep it move.    when the object begins to move, you  can reduce the force you apply on it to  keep it moving constantly. when  you don′t reduce the force, the object  will get an acceleration from your  force and gets faster and faster,  because the friction (kinetic) force  acting on it is smaller than the force  you are applying.
$${something}\:{elementary}\:{about}\:{friction}: \\ $$$${before}\:{an}\:{object}\:{moves},\:{the} \\ $$$${friction}\:{is}\:{called}\:{static}\:{friction}.\:{it} \\ $$$${is}\:{NOT}\:{a}\:{constant}\:{force}!\:{it}\:{is}\:{just}\:{a} \\ $$$${reaction}\:{force}.\:{if}\:{you}\:{don}'{t}\:{apply} \\ $$$${a}\:{force}\:{an}\:{the}\:{object}\:{to}\:{attempt}\:{to} \\ $$$${move}\:{it},\:{the}\:{friction}\:{is}\:{zero}.\:{as}\:{far} \\ $$$${as}\:{the}\:{force}\:{you}\:{are}\:{applying}\:{on}\:{it} \\ $$$${is}\:{less}\:{than}\:{the}\:{maximal}\:{possible} \\ $$$${static}\:{friction},\:{which}\:{is}\:{calculated} \\ $$$${by}\:{f}_{{max}} =\mu_{{static}} {N},\:{the}\:{object}\:{doesn}'{t} \\ $$$${move}\:{and}\:{the}\:{friction}\:{force}\:{f}\:{which} \\ $$$${is}\:{actually}\:{acting}\:{on}\:{the}\:{object}\:{is}\: \\ $$$${always}\:{equal}\:{to}\:{the}\:{active}\:{force}\:{F}\:{you} \\ $$$${are}\:{applying}\:{on}\:{the}\:{object},\:{i}.{e}.\:{f}={F}. \\ $$$$ \\ $$$${when}\:{you}\:{increase}\:{the}\:{active}\:{force}\:{F} \\ $$$${und}\:{reach}\:{the}\:{maximal}\:{possible} \\ $$$${static}\:{friction}\:{force}\:{f}_{{max}} =\mu_{{static}} {N}, \\ $$$${the}\:{object}\:{begins}\:{to}\:{move}.\:{once}\:{an} \\ $$$${object}\:{moves},\:{there}\:{acts}\:{always}\:{a} \\ $$$${friction}\:{force}\:{on}\:{the}\:{object},\:{this} \\ $$$${friction}\:{is}\:{called}\:{kinetic}\:{friction}, \\ $$$${which}\:{is}\:{calculated}\:{by}\:{f}_{{kinetic}} =\mu_{{kinetic}} {N}. \\ $$$${it}\:{is}\:{always}\:{there}\:{and}\:{is}\:{constant},\:{as} \\ $$$${far}\:{as}\:{the}\:{object}\:{moves}.\:{the}\: \\ $$$${maximal}\:{static}\:{friction}\:{which}\:{must} \\ $$$${be}\:{overcome}\:{to}\:{make}\:{an}\:{object}\:{move} \\ $$$${is}\:\:{larger}\:{than}\:{the}\:{kinetic}\:{friction}.\: \\ $$$${we}\:{can}\:{experience}\:{this}\:{in}\:{our} \\ $$$${daily}\:{life}:\:{to}\:{make}\:{an}\:{object}\:{to}\:{start} \\ $$$${to}\:{move}\:{is}\:{more}\:{hard}\:{than}\:{just}\:{to} \\ $$$${keep}\:{it}\:{move}. \\ $$$$ \\ $$$${when}\:{the}\:{object}\:{begins}\:{to}\:{move},\:{you} \\ $$$${can}\:{reduce}\:{the}\:{force}\:{you}\:{apply}\:{on}\:{it}\:{to} \\ $$$${keep}\:{it}\:{moving}\:{constantly}.\:{when} \\ $$$${you}\:{don}'{t}\:{reduce}\:{the}\:{force},\:{the}\:{object} \\ $$$${will}\:{get}\:{an}\:{acceleration}\:{from}\:{your} \\ $$$${force}\:{and}\:{gets}\:{faster}\:{and}\:{faster}, \\ $$$${because}\:{the}\:{friction}\:\left({kinetic}\right)\:{force} \\ $$$${acting}\:{on}\:{it}\:{is}\:{smaller}\:{than}\:{the}\:{force} \\ $$$${you}\:{are}\:{applying}. \\ $$
Commented by Tawa11 last updated on 06/May/22
God bless you sir. I really appreciate your time.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *