Menu Close

Question-169849




Question Number 169849 by cherokeesay last updated on 10/May/22
Answered by som(math1967) last updated on 11/May/22
Commented by som(math1967) last updated on 11/May/22
AO=(√(2^2 +1^2 ))=(√5)cm  AL=(√5)−1  EL=CE=hcm  BE=2−h  AE^2 =2^2 +(2−h)^2   AL^2 +h^2 =4+4+h^2 −4h  ((√5)−1)^2 +h^2 =8−4h+h^2   6−2(√5)=8−4h   h=((2+2(√5))/4)=(((√5)+1)/2)  area of△ AEO=(1/2)×(√5)×(((√5)+1)/2)       =((5+(√5))/4)cm^2
$${AO}=\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }=\sqrt{\mathrm{5}}{cm} \\ $$$${AL}=\sqrt{\mathrm{5}}−\mathrm{1} \\ $$$${EL}={CE}={hcm} \\ $$$${BE}=\mathrm{2}−{h} \\ $$$${AE}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} +\left(\mathrm{2}−{h}\right)^{\mathrm{2}} \\ $$$${AL}^{\mathrm{2}} +{h}^{\mathrm{2}} =\mathrm{4}+\mathrm{4}+{h}^{\mathrm{2}} −\mathrm{4}{h} \\ $$$$\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)^{\mathrm{2}} +{h}^{\mathrm{2}} =\mathrm{8}−\mathrm{4}{h}+{h}^{\mathrm{2}} \\ $$$$\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}=\mathrm{8}−\mathrm{4}{h} \\ $$$$\:{h}=\frac{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$$${area}\:{of}\bigtriangleup\:{AEO}=\frac{\mathrm{1}}{\mathrm{2}}×\sqrt{\mathrm{5}}×\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:=\frac{\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{4}}{cm}^{\mathrm{2}} \\ $$$$ \\ $$
Commented by cherokeesay last updated on 11/May/22
greet !  thank you sir !
$${greet}\:! \\ $$$${thank}\:{you}\:{sir}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *