Menu Close

Question-169969




Question Number 169969 by Beginner last updated on 13/May/22
Answered by mr W last updated on 13/May/22
Commented by ajfour last updated on 13/May/22
u=(√(2gh))  (usin θ)t+(((gsin θ)t^2 )/2)=s  (ucos θ)t−(((gcos θ)t^2 )/2)=0  ⇒  t=((2u)/g)   s=((2u^2 sin θ)/g)+((2u^2 sin θ)/g)   s=((4(2gh)sin θ)/g)   s=8hsin θ
u=2gh(usinθ)t+(gsinθ)t22=s(ucosθ)t(gcosθ)t22=0t=2ugs=2u2sinθg+2u2sinθgs=4(2gh)sinθgs=8hsinθ
Commented by mr W last updated on 13/May/22
great sir!
greatsir!
Commented by learner22 last updated on 13/May/22
bravo
bravo
Commented by mr W last updated on 13/May/22
Commented by mr W last updated on 13/May/22
assume that the ball hits the plane  again, then  with λ=(a/h)=((l sin θ)/h) and ξ=(l/h) we have  cos 2θ+(√(cos^2  2θ+ξ sin θ))=((ξ sin θ)/(2(1−cos 2θ)))  (√(cos^2  2θ+ξ sin θ))=((ξ sin θ)/(2(1−cos 2θ)))−cos 2θ  ⇒ξ=8 sin θ
assumethattheballhitstheplaneagain,thenwithλ=ah=lsinθhandξ=lhwehavecos2θ+cos22θ+ξsinθ=ξsinθ2(1cos2θ)cos22θ+ξsinθ=ξsinθ2(1cos2θ)cos2θξ=8sinθ
Commented by mr W last updated on 13/May/22
say impact point B is a above the  ground.  speed at point B:  v=(√(2gh))  upon point B:  x=v sin 2θ t  y=a+v cos 2θ t−((gt^2 )/2)  y=a+v cos 2θ×(x/(v sin 2θ))−(g/2)×((x/(v sin 2θ)))^2   y=a+(x/(tan 2θ))−((gx^2 )/(2v^2  sin^2  2θ))  ⇒y=a+(x/(tan 2θ))−(x^2 /(4h sin^2  2θ))  at y=0:  a+(x/(tan 2θ))−(x^2 /(4h sin^2  2θ))=0  x^2 −((4h sin^2  2θx)/(tan 2θ))−4ah sin^2  2θ=0  x=((2h sin^2  2θ)/(tan 2θ))+2 sin 2θ(√(h(h cos^2  2θ+a)))  such that the ball hits the plane again,  x=((2h sin^2  2θ)/(tan 2θ))+2 sin 2θ(√(h(h cos^2  2θ+a)))≤b=(a/(tan θ))  ((2 sin^2  2θ)/(tan 2θ))+2 sin 2θ(√(cos^2  2θ+(a/h)))≤(a/(h tan θ))  let λ=(a/h)  ⇒cos 2θ+(√(cos^2  2θ+λ))≤(λ/(2(1−cos 2θ)))  example: θ=30°  λ=2.2873  i.e. when (a/h)≥2.2873, the ball will  hit the plane again after the impact.
sayimpactpointBisaabovetheground.speedatpointB:v=2ghuponpointB:x=vsin2θty=a+vcos2θtgt22y=a+vcos2θ×xvsin2θg2×(xvsin2θ)2y=a+xtan2θgx22v2sin22θy=a+xtan2θx24hsin22θaty=0:a+xtan2θx24hsin22θ=0x24hsin22θxtan2θ4ahsin22θ=0x=2hsin22θtan2θ+2sin2θh(hcos22θ+a)suchthattheballhitstheplaneagain,x=2hsin22θtan2θ+2sin2θh(hcos22θ+a)b=atanθ2sin22θtan2θ+2sin2θcos22θ+ahahtanθletλ=ahcos2θ+cos22θ+λλ2(1cos2θ)example:θ=30°λ=2.2873i.e.whenah2.2873,theballwillhittheplaneagainaftertheimpact.
Commented by Tawa11 last updated on 14/May/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *