Question-170010 Tinku Tara June 4, 2023 Geometry 0 Comments FacebookTweetPin Question Number 170010 by mr W last updated on 13/May/22 Commented by mr W last updated on 13/May/22 GivenatriangleΔABCwithsidesa,b,c.Findtheareaoftheinscribedtriangleintermsofa,b,c,θ. Answered by mr W last updated on 15/May/22 Commented by mr W last updated on 15/May/22 wecanseethatΔQRP∼ΔABC⇒pc=qa=rb=k,sayBPsin(B+θ)=RPsinB⇒BP=kasin(B+θ)sinBPCsinθ=PQsinC⇒PC=kbsinθsinCa=kasin(B+θ)sinB+kbsinθsinC⇒a×sinB−ksin(B+θ)sinB=kbsinθsinC(i)similarly⇒b×sinC−ksin(C+θ)sinC=kcsinθsinA(ii)⇒c×sinA−ksin(A+θ)sinA=kasinθsinB(iii)(i)×(ii)×(iii):[sinA−ksin(A+θ)][sinB−ksin(B+θ)][sinC−ksin(C+θ)]=sin3θk3[sin3θ+sin(A+θ)sin(B+θ)sin(C+θ)]k3−[sinAsin(B+θ)sin(C+θ)+sinBsin(C+θ)sin(A+θ)+sinCsin(A+θ)sin(B+θ)]k2+[sinAsinBsin(C+θ)+sin(A+θ)sinBsinC+sinAsinBsin(C+θ)]k−sinAsinBsinC=0sin3θ+sin(A+θ)sin(B+θ)sin(C+θ)=sin3θ+(sinAcosθ+cosAsinθ)(sinBcosθ+cosBsinθ)(sinCcosθ+cosCsinθ)=sin3θ+[sinAsinB−cosCsin2θ+sinCsinθcosθ](sinCcosθ+cosCsinθ)=sin3θ+sinAsinBsinCcosθ−sin3θ+(cosAcosBcosC+1)sinθ=sinAsinBsinCcosθ+(cosAcosBcosC+1)sinθsinAsin(B+θ)sin(C+θ)=sinA(sinBcosθ+cosBsinθ)(sinCcosθ+cosCsinθ)=sinA(sinBsinCcos2θ+sinAsinθcosθ+cosBcosCsin2θ)=sinAsinBsinCcos2θ+sin2Asinθcosθ+14(sin2A+sin2B−sin2C)sin2θΣ=3sinAsinBsinCcos2θ+(sin2A+sin2B+sin2C)sinθcosθ+34(sin2A+sin2B+sin2C)sin2θ−12(sin2A+sin2B+sin2C)sin2θ=sinAsinBsinC(cos2θ+2)+(cosAcosBcosC+1)sin2θsinAsinBsin(C+θ)sinAsinB(sinCcosθ+cosCsinθ)sinAsinBsinCcosθ+12(sin2A+sin2B+sin2C)sinθ−sin2CsinθΣ=3sinAsinBsinCcosθ+(cosAcosBcosC+1)sinθ{sinAsinBsinCcosθ+(cosAcosBcosC+1)sinθ}k3−{sinAsinBsinC(cos2θ+2)+(cosAcosBcosC+1)sin2θ}k2+{3sinAsinBsinCcosθ+(cosAcosBcosC+1)sinθ}k−sinAsinBsinC=0orletλ=cosAcosBcosC+1sinAsinBsinC=a2+b2+c24ΔABC(cosθ+λsinθ)k3−(2+cos2θ+λsin2θ)k2+(3cosθ+λsinθ)k−1=0⇒k=1cosθ+λsinθ(wow!ididn′texpectthattherootofthiscomplicatedcubicequationissobrief!)ΔPQR=k2ΔABCΔPQR=ΔABC(cosθ+λsinθ)2specialcase:θ=π2⇒k=1λ=sinAsinBsinCcosAcosBcosC+1thisisthesameaswegetinQ169815. Commented by Tawa11 last updated on 08/Oct/22 Greatsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-38936Next Next post: Question-170014 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.