Menu Close

Question-170120




Question Number 170120 by mr W last updated on 16/May/22
Commented by mr W last updated on 17/May/22
A truck with mass M is moving on  a horizontal and straight road with  speed v. A small box with mass m lies  at the end of the luggage compartment  of length L. The friction coefficient  between tires of truck and the road  is 𝛍, and that between the box and the  truck is 𝛍/2. The truck obtains a full   brake and it stops exactly at the  instant as the box reaches the other  end of the luggage compartment.  Find the speed of the truck as it starts   to brake.
$${A}\:{truck}\:{with}\:{mass}\:\boldsymbol{{M}}\:{is}\:{moving}\:{on} \\ $$$${a}\:{horizontal}\:{and}\:{straight}\:{road}\:{with} \\ $$$${speed}\:\boldsymbol{{v}}.\:{A}\:{small}\:{box}\:{with}\:{mass}\:\boldsymbol{{m}}\:{lies} \\ $$$${at}\:{the}\:{end}\:{of}\:{the}\:{luggage}\:{compartment} \\ $$$${of}\:{length}\:\boldsymbol{{L}}.\:{The}\:{friction}\:{coefficient} \\ $$$${between}\:{tires}\:{of}\:{truck}\:{and}\:{the}\:{road} \\ $$$${is}\:\boldsymbol{\mu},\:{and}\:{that}\:{between}\:{the}\:{box}\:{and}\:{the} \\ $$$${truck}\:{is}\:\boldsymbol{\mu}/\mathrm{2}.\:{The}\:{truck}\:{obtains}\:{a}\:{full}\: \\ $$$${brake}\:{and}\:{it}\:{stops}\:{exactly}\:{at}\:{the} \\ $$$${instant}\:{as}\:{the}\:{box}\:{reaches}\:{the}\:{other} \\ $$$${end}\:{of}\:{the}\:{luggage}\:{compartment}. \\ $$$${Find}\:{the}\:{speed}\:{of}\:{the}\:{truck}\:{as}\:{it}\:{starts}\: \\ $$$${to}\:{brake}. \\ $$
Commented by ajfour last updated on 18/May/22
i had again just now sir, but  got deleted, shall answer soon  again..
$${i}\:{had}\:{again}\:{just}\:{now}\:{sir},\:{but} \\ $$$${got}\:{deleted},\:{shall}\:{answer}\:{soon} \\ $$$${again}.. \\ $$
Answered by mr W last updated on 19/May/22
N_T =(M+m)g  f_T =μN_T =μ(M+m)g  N_B =mg  f_B =((μN_B )/2)=((μmg)/2)  ma_B =f_B =((μmg)/2)  ⇒a_B =((μg)/2)  Ma_T =−f_B +f_T =−((μmg)/2)+μ(M+m)g  ⇒a_T =μ(1+(m/(2M)))g  say the truck traveled a distance d  in time t, then the box traveled  a distance of d+L in this time.  t=(v/a_T )  d=(v^2 /(2a_T ))  d+L=vt−((a_B t^2 )/2)  (v^2 /(2a_T ))+L=(v^2 /a_T )−(a_B /2)((v/a_T ))^2   2La_T =(1−(a_B /a_T ))v^2   2Lμ(1+(m/(2M)))g=(1−(((μg)/2)/(μ(1+(m/(2M)))g)))v^2   μgL(2+(m/M))=(((1+(m/M))/(2+(m/M))))v^2   let ξ=(m/M)  μgL(2+ξ)=(((1+ξ)/(2+ξ)))v^2   ⇒v=(2+ξ)(√((μgL)/(1+ξ)))
$${N}_{{T}} =\left({M}+{m}\right){g} \\ $$$${f}_{{T}} =\mu{N}_{{T}} =\mu\left({M}+{m}\right){g} \\ $$$${N}_{{B}} ={mg} \\ $$$${f}_{{B}} =\frac{\mu{N}_{{B}} }{\mathrm{2}}=\frac{\mu{mg}}{\mathrm{2}} \\ $$$${ma}_{{B}} ={f}_{{B}} =\frac{\mu{mg}}{\mathrm{2}} \\ $$$$\Rightarrow{a}_{{B}} =\frac{\mu{g}}{\mathrm{2}} \\ $$$${Ma}_{{T}} =−{f}_{{B}} +{f}_{{T}} =−\frac{\mu{mg}}{\mathrm{2}}+\mu\left({M}+{m}\right){g} \\ $$$$\Rightarrow{a}_{{T}} =\mu\left(\mathrm{1}+\frac{{m}}{\mathrm{2}{M}}\right){g} \\ $$$${say}\:{the}\:{truck}\:{traveled}\:{a}\:{distance}\:{d} \\ $$$${in}\:{time}\:{t},\:{then}\:{the}\:{box}\:{traveled} \\ $$$${a}\:{distance}\:{of}\:{d}+{L}\:{in}\:{this}\:{time}. \\ $$$${t}=\frac{{v}}{{a}_{{T}} } \\ $$$${d}=\frac{{v}^{\mathrm{2}} }{\mathrm{2}{a}_{{T}} } \\ $$$${d}+{L}={vt}−\frac{{a}_{{B}} {t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}{a}_{{T}} }+{L}=\frac{{v}^{\mathrm{2}} }{{a}_{{T}} }−\frac{{a}_{{B}} }{\mathrm{2}}\left(\frac{{v}}{{a}_{{T}} }\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{La}_{{T}} =\left(\mathrm{1}−\frac{{a}_{{B}} }{{a}_{{T}} }\right){v}^{\mathrm{2}} \\ $$$$\mathrm{2}{L}\mu\left(\mathrm{1}+\frac{{m}}{\mathrm{2}{M}}\right){g}=\left(\mathrm{1}−\frac{\frac{\mu{g}}{\mathrm{2}}}{\mu\left(\mathrm{1}+\frac{{m}}{\mathrm{2}{M}}\right){g}}\right){v}^{\mathrm{2}} \\ $$$$\mu{gL}\left(\mathrm{2}+\frac{{m}}{{M}}\right)=\left(\frac{\mathrm{1}+\frac{{m}}{{M}}}{\mathrm{2}+\frac{{m}}{{M}}}\right){v}^{\mathrm{2}} \\ $$$${let}\:\xi=\frac{{m}}{{M}} \\ $$$$\mu{gL}\left(\mathrm{2}+\xi\right)=\left(\frac{\mathrm{1}+\xi}{\mathrm{2}+\xi}\right){v}^{\mathrm{2}} \\ $$$$\Rightarrow{v}=\left(\mathrm{2}+\xi\right)\sqrt{\frac{\mu{gL}}{\mathrm{1}+\xi}} \\ $$
Commented by ajfour last updated on 17/May/22
do i need to explain my way,  in more detail sir?   its shorter..
$${do}\:{i}\:{need}\:{to}\:{explain}\:{my}\:{way}, \\ $$$${in}\:{more}\:{detail}\:{sir}?\: \\ $$$${its}\:{shorter}.. \\ $$
Commented by mr W last updated on 17/May/22
please sir!
$${please}\:{sir}! \\ $$
Commented by mr W last updated on 18/May/22
Commented by Tawa11 last updated on 08/Oct/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *