Question Number 170120 by mr W last updated on 16/May/22
Commented by mr W last updated on 17/May/22
$${A}\:{truck}\:{with}\:{mass}\:\boldsymbol{{M}}\:{is}\:{moving}\:{on} \\ $$$${a}\:{horizontal}\:{and}\:{straight}\:{road}\:{with} \\ $$$${speed}\:\boldsymbol{{v}}.\:{A}\:{small}\:{box}\:{with}\:{mass}\:\boldsymbol{{m}}\:{lies} \\ $$$${at}\:{the}\:{end}\:{of}\:{the}\:{luggage}\:{compartment} \\ $$$${of}\:{length}\:\boldsymbol{{L}}.\:{The}\:{friction}\:{coefficient} \\ $$$${between}\:{tires}\:{of}\:{truck}\:{and}\:{the}\:{road} \\ $$$${is}\:\boldsymbol{\mu},\:{and}\:{that}\:{between}\:{the}\:{box}\:{and}\:{the} \\ $$$${truck}\:{is}\:\boldsymbol{\mu}/\mathrm{2}.\:{The}\:{truck}\:{obtains}\:{a}\:{full}\: \\ $$$${brake}\:{and}\:{it}\:{stops}\:{exactly}\:{at}\:{the} \\ $$$${instant}\:{as}\:{the}\:{box}\:{reaches}\:{the}\:{other} \\ $$$${end}\:{of}\:{the}\:{luggage}\:{compartment}. \\ $$$${Find}\:{the}\:{speed}\:{of}\:{the}\:{truck}\:{as}\:{it}\:{starts}\: \\ $$$${to}\:{brake}. \\ $$
Commented by ajfour last updated on 18/May/22
$${i}\:{had}\:{again}\:{just}\:{now}\:{sir},\:{but} \\ $$$${got}\:{deleted},\:{shall}\:{answer}\:{soon} \\ $$$${again}.. \\ $$
Answered by mr W last updated on 19/May/22
$${N}_{{T}} =\left({M}+{m}\right){g} \\ $$$${f}_{{T}} =\mu{N}_{{T}} =\mu\left({M}+{m}\right){g} \\ $$$${N}_{{B}} ={mg} \\ $$$${f}_{{B}} =\frac{\mu{N}_{{B}} }{\mathrm{2}}=\frac{\mu{mg}}{\mathrm{2}} \\ $$$${ma}_{{B}} ={f}_{{B}} =\frac{\mu{mg}}{\mathrm{2}} \\ $$$$\Rightarrow{a}_{{B}} =\frac{\mu{g}}{\mathrm{2}} \\ $$$${Ma}_{{T}} =−{f}_{{B}} +{f}_{{T}} =−\frac{\mu{mg}}{\mathrm{2}}+\mu\left({M}+{m}\right){g} \\ $$$$\Rightarrow{a}_{{T}} =\mu\left(\mathrm{1}+\frac{{m}}{\mathrm{2}{M}}\right){g} \\ $$$${say}\:{the}\:{truck}\:{traveled}\:{a}\:{distance}\:{d} \\ $$$${in}\:{time}\:{t},\:{then}\:{the}\:{box}\:{traveled} \\ $$$${a}\:{distance}\:{of}\:{d}+{L}\:{in}\:{this}\:{time}. \\ $$$${t}=\frac{{v}}{{a}_{{T}} } \\ $$$${d}=\frac{{v}^{\mathrm{2}} }{\mathrm{2}{a}_{{T}} } \\ $$$${d}+{L}={vt}−\frac{{a}_{{B}} {t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}{a}_{{T}} }+{L}=\frac{{v}^{\mathrm{2}} }{{a}_{{T}} }−\frac{{a}_{{B}} }{\mathrm{2}}\left(\frac{{v}}{{a}_{{T}} }\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{La}_{{T}} =\left(\mathrm{1}−\frac{{a}_{{B}} }{{a}_{{T}} }\right){v}^{\mathrm{2}} \\ $$$$\mathrm{2}{L}\mu\left(\mathrm{1}+\frac{{m}}{\mathrm{2}{M}}\right){g}=\left(\mathrm{1}−\frac{\frac{\mu{g}}{\mathrm{2}}}{\mu\left(\mathrm{1}+\frac{{m}}{\mathrm{2}{M}}\right){g}}\right){v}^{\mathrm{2}} \\ $$$$\mu{gL}\left(\mathrm{2}+\frac{{m}}{{M}}\right)=\left(\frac{\mathrm{1}+\frac{{m}}{{M}}}{\mathrm{2}+\frac{{m}}{{M}}}\right){v}^{\mathrm{2}} \\ $$$${let}\:\xi=\frac{{m}}{{M}} \\ $$$$\mu{gL}\left(\mathrm{2}+\xi\right)=\left(\frac{\mathrm{1}+\xi}{\mathrm{2}+\xi}\right){v}^{\mathrm{2}} \\ $$$$\Rightarrow{v}=\left(\mathrm{2}+\xi\right)\sqrt{\frac{\mu{gL}}{\mathrm{1}+\xi}} \\ $$
Commented by ajfour last updated on 17/May/22
$${do}\:{i}\:{need}\:{to}\:{explain}\:{my}\:{way}, \\ $$$${in}\:{more}\:{detail}\:{sir}?\: \\ $$$${its}\:{shorter}.. \\ $$
Commented by mr W last updated on 17/May/22
$${please}\:{sir}! \\ $$
Commented by mr W last updated on 18/May/22
Commented by Tawa11 last updated on 08/Oct/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$