Menu Close

Question-170126




Question Number 170126 by daus last updated on 17/May/22
Commented by daus last updated on 17/May/22
pls show me the way, btw x=2
$${pls}\:{show}\:{me}\:{the}\:{way},\:{btw}\:{x}=\mathrm{2} \\ $$
Commented by mr W last updated on 17/May/22
there is no “nice” way to solve such  equations! the solution must be   obviously to see. if you can′t see it,   nobody can teach you a way to solve it.  3^2 +log_2  2=9+1=10 ⇒x=2  but if the equation is  3^x =20−log_2  x  you can′t solve it in the same way.
$${there}\:{is}\:{no}\:“{nice}''\:{way}\:{to}\:{solve}\:{such} \\ $$$${equations}!\:{the}\:{solution}\:{must}\:{be}\: \\ $$$${obviously}\:{to}\:{see}.\:{if}\:{you}\:{can}'{t}\:{see}\:{it},\: \\ $$$${nobody}\:{can}\:{teach}\:{you}\:{a}\:{way}\:{to}\:{solve}\:{it}. \\ $$$$\mathrm{3}^{\mathrm{2}} +\mathrm{log}_{\mathrm{2}} \:\mathrm{2}=\mathrm{9}+\mathrm{1}=\mathrm{10}\:\Rightarrow{x}=\mathrm{2} \\ $$$${but}\:{if}\:{the}\:{equation}\:{is} \\ $$$$\mathrm{3}^{{x}} =\mathrm{20}−\mathrm{log}_{\mathrm{2}} \:{x} \\ $$$${you}\:{can}'{t}\:{solve}\:{it}\:{in}\:{the}\:{same}\:{way}. \\ $$
Commented by daus last updated on 17/May/22
ouh thanks
$${ouh}\:{thanks}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *