Menu Close

Question-170321




Question Number 170321 by amin96 last updated on 20/May/22
Answered by aleks041103 last updated on 21/May/22
a)  (2^x /3^x^2  )=2^x 3^(−x^2 ) =e^(ln(2)x−ln(3)x^2 )   lim_(x→∞) (2^x /3^x^2  )=lim_(x→∞) e^(ln(2)x−ln(3)x^2 ) =e^(−∞) =0  b)  lim_(x→0^+ ) (e^(−3/x) /x^2 )=[(0/0)]=lim_(1/x→∞) ((1/x))^2 e^(−3(1/x))   =lim_(y→∞) (y^2 /e^(3y) )=lim_(y→∞) ((2y)/(3e^(3y) ))=lim_(y→∞) (2/(9e^(3y) ))=0  c)  lim_(x→∞) ((ln^5 x)/x^2 )=(lim_(x→∞) ((lnx)/x^(2/5) ))^5 =(lim_(x→∞) ((lnx)/x^(2/5) ))^5 =  =((5/2)lim_(x→∞) ((ln(x^(2/5) ))/x^(2/5) ))^5 =(5^5 /2^5 )(lim_(y→∞) ((lny)/y))^5 =  =((625×5)/(32))(lim_(y→∞) ((1/y)/1))^5 =0  d)  by analogy→0
a)2x3x2=2x3x2=eln(2)xln(3)x2limx2x3x2=limexln(2)xln(3)x2=e=0b)limx0+e3/xx2=[00]=lim1/x(1x)2e3(1/x)=limyy2e3y=limy2y3e3y=limy29e3y=0c)limxln5xx2=(limxlnxx2/5)5=(limxlnxx2/5)5==(52limxln(x2/5)x2/5)5=5525(limylnyy)5==625×532(limy1/y1)5=0d)byanalogy0

Leave a Reply

Your email address will not be published. Required fields are marked *