Menu Close

Question-170673




Question Number 170673 by solomonwells last updated on 28/May/22
Commented by cortano1 last updated on 29/May/22
 ⇒2(2x+(√x) )= 3(√x) +2(√(4x^2 −x)) ; x>0  ⇒4x−(√x) = 2(√(4x^2 −x))  ⇒4((√x) )^2 −(√x) = 2(√x) (√(4x−1))  ⇒(√x) (4(√x)−1−2(√(4x−1)) )=0  ⇒4(√x)−1 = 2(√(4x−1))  ⇒16x+1−8(√x) = 16x−4  ⇒8(√x) = 5 ; x=((25)/(64))
$$\:\Rightarrow\mathrm{2}\left(\mathrm{2}{x}+\sqrt{{x}}\:\right)=\:\mathrm{3}\sqrt{{x}}\:+\mathrm{2}\sqrt{\mathrm{4}{x}^{\mathrm{2}} −{x}}\:;\:{x}>\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}{x}−\sqrt{{x}}\:=\:\mathrm{2}\sqrt{\mathrm{4}{x}^{\mathrm{2}} −{x}} \\ $$$$\Rightarrow\mathrm{4}\left(\sqrt{{x}}\:\right)^{\mathrm{2}} −\sqrt{{x}}\:=\:\mathrm{2}\sqrt{{x}}\:\sqrt{\mathrm{4}{x}−\mathrm{1}} \\ $$$$\Rightarrow\sqrt{{x}}\:\left(\mathrm{4}\sqrt{{x}}−\mathrm{1}−\mathrm{2}\sqrt{\mathrm{4}{x}−\mathrm{1}}\:\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{4}\sqrt{{x}}−\mathrm{1}\:=\:\mathrm{2}\sqrt{\mathrm{4}{x}−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{16}{x}+\mathrm{1}−\mathrm{8}\sqrt{{x}}\:=\:\mathrm{16}{x}−\mathrm{4} \\ $$$$\Rightarrow\mathrm{8}\sqrt{{x}}\:=\:\mathrm{5}\:;\:{x}=\frac{\mathrm{25}}{\mathrm{64}}\: \\ $$
Commented by solomonwells last updated on 29/May/22
thanks so much sir
$$\mathrm{thanks}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *