Question Number 170767 by 2407 last updated on 30/May/22
Answered by aleks041103 last updated on 30/May/22
$${L}=\underset{{x}\rightarrow\infty} {{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{5}^{{x}} +\mathrm{7}^{{x}} +\mathrm{9}^{{x}} }\right)^{−\sqrt{\frac{\mathrm{1}}{{x}}}} \\ $$$$\Rightarrow{lnL}=\underset{{x}\rightarrow\infty} {{lim}}\frac{{ln}\left(\mathrm{5}^{{x}} +\mathrm{7}^{{x}} +\mathrm{9}^{{x}} \right)}{\:\sqrt{{x}}} \\ $$$${since}\:\mathrm{5},\mathrm{7},\mathrm{9}>\mathrm{1}\Rightarrow\mathrm{5}^{{x}} +\mathrm{7}^{{x}} +\mathrm{9}^{{x}} >\mathrm{9}^{{x}} \\ $$$$\Rightarrow\frac{{ln}\left(\mathrm{5}^{{x}} +\mathrm{7}^{{x}} +\mathrm{9}^{{x}} \right)}{\:\sqrt{{x}}}>\frac{{x}\:{ln}\left(\mathrm{9}\right)}{\:\sqrt{{x}}}=\sqrt{{x}}{ln}\left(\mathrm{9}\right) \\ $$$$\Rightarrow{since}\:\sqrt{{x}}\:{ln}\left(\mathrm{9}\right)\:{diverges}\:{as}\:{x}\rightarrow\infty, \\ $$$${then}\:\frac{{ln}\left(\mathrm{5}^{{x}} +\mathrm{7}^{{x}} +\mathrm{9}^{{x}} \right)}{\:\sqrt{{x}}}\rightarrow\infty\:,\:{too}. \\ $$$$\Rightarrow{L}\rightarrow\infty \\ $$
Answered by Mathspace last updated on 31/May/22
$${A}_{{n}} ={e}^{−\frac{\mathrm{1}}{\:\sqrt{{n}}}{ln}\left(\frac{\mathrm{1}}{\mathrm{5}^{{n}} +\mathrm{7}^{{n}} +\mathrm{9}^{{n}} }\right)} \\ $$$$={e}^{\frac{\mathrm{1}}{\:\sqrt{{n}}}{ln}\left(\mathrm{5}^{{n}} +\mathrm{7}^{{n}} +\mathrm{9}^{{n}} \right)} \\ $$$$={e}^{\frac{\mathrm{1}}{\:\sqrt{{n}}}\left(\mathrm{2}{nln}\left(\mathrm{3}\right)+{ln}\left(\mathrm{1}+\left(\frac{\mathrm{5}}{\mathrm{9}}\right)^{{n}} +\left(\frac{\mathrm{7}}{\mathrm{9}}\right)^{{n}} \right)\right.} \\ $$$$={e}^{\mathrm{2}\sqrt{{n}}{ln}\left(\mathrm{3}\right)} .{e}^{\frac{\mathrm{1}}{\:\sqrt{{n}}}{ln}\left(\mathrm{1}+\left(\frac{\mathrm{5}}{\mathrm{9}}\right)^{{n}} +\left(\frac{\mathrm{7}}{\mathrm{9}}\right)^{{n}} \right)} \\ $$$$\sim{e}^{\mathrm{2}\sqrt{{n}}{ln}\left(\mathrm{3}\right)} .{e}^{\frac{\mathrm{1}}{\:\sqrt{{n}}}\left\{\left(\frac{\mathrm{5}}{\mathrm{9}}\right)^{{n}} +\left(\frac{\mathrm{7}}{\mathrm{9}}\right)^{{n}} \right\}} \rightarrow+\infty \\ $$