Menu Close

Question-170809




Question Number 170809 by thean last updated on 31/May/22
Answered by som(math1967) last updated on 31/May/22
 lim_(x→0) ((e^(−1) (e^(2x) −1)sin3x)/x^2 )  =(6/e) lim_(x→0) (((e^(2x) −1))/(2x))×((sin3x)/(3x))  =(6/e)×1=(6/e)
$$\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{e}^{−\mathrm{1}} \left({e}^{\mathrm{2}{x}} −\mathrm{1}\right){sin}\mathrm{3}{x}}{{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{6}}{{e}}\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\left({e}^{\mathrm{2}{x}} −\mathrm{1}\right)}{\mathrm{2}{x}}×\frac{{sin}\mathrm{3}{x}}{\mathrm{3}{x}} \\ $$$$=\frac{\mathrm{6}}{{e}}×\mathrm{1}=\frac{\mathrm{6}}{{e}} \\ $$
Answered by Mathspace last updated on 31/May/22
f(x)=((e^(2x−1) −e^(−1) )/x^2 )sin(3x)  sin(3x)∼3x and  e^(2x−1) −e^(−1) =e^(−1) (e^(2x) −1)  e^u ∼1+u ⇒e^(2x) −1∼2x ⇒  f(x)∼((2xe^(−1) )/x^2 )×3x =(6/e)  ⇒lim_(x→0) f(x)=(6/e)
$${f}\left({x}\right)=\frac{{e}^{\mathrm{2}{x}−\mathrm{1}} −{e}^{−\mathrm{1}} }{{x}^{\mathrm{2}} }{sin}\left(\mathrm{3}{x}\right) \\ $$$${sin}\left(\mathrm{3}{x}\right)\sim\mathrm{3}{x}\:{and} \\ $$$${e}^{\mathrm{2}{x}−\mathrm{1}} −{e}^{−\mathrm{1}} ={e}^{−\mathrm{1}} \left({e}^{\mathrm{2}{x}} −\mathrm{1}\right) \\ $$$${e}^{{u}} \sim\mathrm{1}+{u}\:\Rightarrow{e}^{\mathrm{2}{x}} −\mathrm{1}\sim\mathrm{2}{x}\:\Rightarrow \\ $$$${f}\left({x}\right)\sim\frac{\mathrm{2}{xe}^{−\mathrm{1}} }{{x}^{\mathrm{2}} }×\mathrm{3}{x}\:=\frac{\mathrm{6}}{{e}} \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)=\frac{\mathrm{6}}{{e}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *