Menu Close

Question-170824




Question Number 170824 by 0731619 last updated on 31/May/22
Answered by floor(10²Eta[1]) last updated on 01/Jun/22
(((a)^(1/3) ((a−x))^(1/3) −(√(a−x))(√(a+x)))/( ((a−x))^(1/3) ((a+x))^(1/3) +∣a∣(√(a−x))))=((a)^(1/3) /( ((a+x))^(1/3) +∣a∣((a−x))^(1/6) ))−((√(a+x))/( ((a−x))^(1/6) ((a+x))^(1/3) +∣a∣))  ⇒lim(...)=((a)^(1/3) /( ((2a))^(1/3) ))−((√(2a))/(∣a∣))=(1/( (2)^(1/3) ))−((√2)/( (√a)))
$$\frac{\sqrt[{\mathrm{3}}]{\mathrm{a}}\sqrt[{\mathrm{3}}]{\mathrm{a}−\mathrm{x}}−\sqrt{\mathrm{a}−\mathrm{x}}\sqrt{\mathrm{a}+\mathrm{x}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{a}−\mathrm{x}}\sqrt[{\mathrm{3}}]{\mathrm{a}+\mathrm{x}}+\mid\mathrm{a}\mid\sqrt{\mathrm{a}−\mathrm{x}}}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{a}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{a}+\mathrm{x}}+\mid\mathrm{a}\mid\sqrt[{\mathrm{6}}]{\mathrm{a}−\mathrm{x}}}−\frac{\sqrt{\mathrm{a}+\mathrm{x}}}{\:\sqrt[{\mathrm{6}}]{\mathrm{a}−\mathrm{x}}\sqrt[{\mathrm{3}}]{\mathrm{a}+\mathrm{x}}+\mid\mathrm{a}\mid} \\ $$$$\Rightarrow\mathrm{lim}\left(…\right)=\frac{\sqrt[{\mathrm{3}}]{\mathrm{a}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2a}}}−\frac{\sqrt{\mathrm{2a}}}{\mid\mathrm{a}\mid}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}}−\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{a}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *