Question Number 170843 by cortano1 last updated on 01/Jun/22
Answered by floor(10²Eta[1]) last updated on 01/Jun/22
$$\frac{\mathrm{log}\left(\mathrm{x}−\mathrm{40}\right)}{\mathrm{log}\sqrt{\mathrm{x}+\mathrm{1}}+\mathrm{1}}=\mathrm{1}\Leftrightarrow\mathrm{log}\left(\mathrm{x}−\mathrm{40}\right)=\mathrm{log}\left(\sqrt{\mathrm{x}+\mathrm{1}}+\mathrm{1}\right) \\ $$$$\Leftrightarrow\mathrm{x}−\mathrm{40}=\sqrt{\mathrm{x}+\mathrm{1}}+\mathrm{1}\Leftrightarrow\sqrt{\mathrm{x}+\mathrm{1}}=\mathrm{x}−\mathrm{41} \\ $$$$\Leftrightarrow\mathrm{x}+\mathrm{1}=\left(\mathrm{x}−\mathrm{41}\right)^{\mathrm{2}} \wedge\mathrm{x}−\mathrm{41}\geqslant\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{83x}+\mathrm{41}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\wedge\mathrm{x}\geqslant\mathrm{41} \\ $$$$\Leftrightarrow\mathrm{x}=\frac{\mathrm{83}\pm\sqrt{\mathrm{169}}}{\mathrm{2}}\wedge\mathrm{x}\geqslant\mathrm{41} \\ $$$$\Leftrightarrow\mathrm{x}=\frac{\mathrm{83}+\mathrm{13}}{\mathrm{2}}=\mathrm{48}=\mathrm{x}_{\mathrm{0}} \\ $$$$\Rightarrow\sqrt{\mathrm{x}_{\mathrm{0}} +\mathrm{1}}=\sqrt{\mathrm{49}}=\mathrm{7} \\ $$