Question Number 170889 by 0731619 last updated on 02/Jun/22
Commented by Tawa11 last updated on 03/Jun/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 02/Jun/22
$${x}>\mathrm{0},\:{x}\neq\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} {x}^{{t}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} {e}^{{t}\mathrm{ln}\:{x}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{ln}\:{x}}\int_{\mathrm{0}} ^{\mathrm{2}} {e}^{{t}\mathrm{ln}\:{x}} {d}\left({t}\mathrm{ln}\:{x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{ln}\:{x}}\left[{x}^{{t}} \right]_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$=\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{ln}\:{x}}=\mathrm{3} \\ $$$${x}^{\mathrm{2}} −\mathrm{1}=\mathrm{3}\:\mathrm{ln}\:{x} \\ $$$${x}^{\mathrm{3}} ={e}^{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$${let}\:{u}={x}^{\mathrm{2}} −\mathrm{1} \\ $$$${x}=\left({u}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\left({u}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} ={e}^{{u}} \\ $$$${u}+\mathrm{1}={e}^{\frac{\mathrm{2}{u}}{\mathrm{3}}} \\ $$$$\left({u}+\mathrm{1}\right){e}^{\frac{\mathrm{2}}{\mathrm{3}}} ={e}^{\frac{\mathrm{2}\left({u}+\mathrm{1}\right)}{\mathrm{3}}} \\ $$$$\frac{\mathrm{2}\left({u}+\mathrm{1}\right)}{\mathrm{3}}{e}^{\frac{\mathrm{2}}{\mathrm{3}}} =\frac{\mathrm{2}}{\mathrm{3}}{e}^{\frac{\mathrm{2}\left({u}+\mathrm{1}\right)}{\mathrm{3}}} \\ $$$$−\frac{\mathrm{2}\left({u}+\mathrm{1}\right)}{\mathrm{3}}{e}^{−\frac{\mathrm{2}\left({u}+\mathrm{1}\right)}{\mathrm{3}}} =−\frac{\mathrm{2}}{\mathrm{3}{e}^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$$$−\frac{\mathrm{2}\left({u}+\mathrm{1}\right)}{\mathrm{3}}={W}\left(−\frac{\mathrm{2}}{\mathrm{3}{e}^{\frac{\mathrm{2}}{\mathrm{3}}} }\right) \\ $$$${u}=−\frac{\mathrm{3}}{\mathrm{2}}{W}\left(−\frac{\mathrm{2}}{\mathrm{3}{e}^{\frac{\mathrm{2}}{\mathrm{3}}} }\right)−\mathrm{1} \\ $$$${x}^{\mathrm{2}} −\mathrm{1}=−\frac{\mathrm{3}}{\mathrm{2}}{W}\left(−\frac{\mathrm{2}}{\mathrm{3}{e}^{\frac{\mathrm{2}}{\mathrm{3}}} }\right)−\mathrm{1} \\ $$$${x}^{\mathrm{2}} =−\frac{\mathrm{3}}{\mathrm{2}}{W}\left(−\frac{\mathrm{2}}{\mathrm{3}{e}^{\frac{\mathrm{2}}{\mathrm{3}}} }\right) \\ $$$${x}=\sqrt{−\frac{\mathrm{3}}{\mathrm{2}}{W}\left(−\frac{\mathrm{2}}{\mathrm{3}{e}^{\frac{\mathrm{2}}{\mathrm{3}}} }\right)}=\begin{cases}{\mathrm{1}.\mathrm{464251632}}\\{\mathrm{1}\:\left({rejected}\right)}\end{cases} \\ $$$$ \\ $$$${generally}: \\ $$$$\int_{\mathrm{0}} ^{{n}} {x}^{{t}} {dt}={m} \\ $$$$\Rightarrow{x}=\sqrt{−\frac{{m}}{{n}}{W}\left(−\frac{{n}}{{me}^{\frac{{n}}{{m}}} }\right)} \\ $$
Commented by Tawa11 last updated on 03/Jun/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$