Menu Close

Question-170968




Question Number 170968 by 281981 last updated on 05/Jun/22
Commented by mr W last updated on 05/Jun/22
tan^2  (x+y)+cos^2  (x+y)−1+(y+1)^2 =0  tan^2  (x+y)−sin^2  (x+y)+(y+1)^2 =0  ((sin^4  (x+y))/(cos^2  (x+y)))+(y+1)^2 =0  ⇒sin (x+y)=0 ∩ y+1=0  ⇒x+y=kπ ∩ y+1=0  ⇒x=kπ+1 ∩ y=−1  d=PQ=(k_1 π+1)−(k_2 π+1)=nπ  cos d=cos (nπ)=(−1)^n
$$\mathrm{tan}^{\mathrm{2}} \:\left({x}+{y}\right)+\mathrm{cos}^{\mathrm{2}} \:\left({x}+{y}\right)−\mathrm{1}+\left({y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{tan}^{\mathrm{2}} \:\left({x}+{y}\right)−\mathrm{sin}^{\mathrm{2}} \:\left({x}+{y}\right)+\left({y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{\mathrm{sin}^{\mathrm{4}} \:\left({x}+{y}\right)}{\mathrm{cos}^{\mathrm{2}} \:\left({x}+{y}\right)}+\left({y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\left({x}+{y}\right)=\mathrm{0}\:\cap\:{y}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{x}+{y}={k}\pi\:\cap\:{y}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{x}={k}\pi+\mathrm{1}\:\cap\:{y}=−\mathrm{1} \\ $$$${d}={PQ}=\left({k}_{\mathrm{1}} \pi+\mathrm{1}\right)−\left({k}_{\mathrm{2}} \pi+\mathrm{1}\right)={n}\pi \\ $$$$\mathrm{cos}\:{d}=\mathrm{cos}\:\left({n}\pi\right)=\left(−\mathrm{1}\right)^{{n}} \\ $$
Commented by 281981 last updated on 05/Jun/22
tnq sir
$$\boldsymbol{\mathrm{tnq}}\:\boldsymbol{\mathrm{sir}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *