Menu Close

Question-170998




Question Number 170998 by 2407 last updated on 06/Jun/22
Answered by ali009 last updated on 06/Jun/22
r^2 +3r+2=0  r=−1    r=−2  y_h =C_1 e^(−x) ×C_2 e^(−2x)   W= determinant ((e^(−x) ,e^(−3x) ),((−e^(−x) ),(−3e^(−3x) )))=−3e^(−4x) +e^(−4x) =−2e^(−4x)   v_1 =∫((sin(x)e^(−3x) )/(2e^(−4x) ))dx=(e^x /4)(sin(x)−cos(x))  v_2 =−∫((sin(x)e^(−x) )/(2e^(−4x) ))dx=(e^(3x) /(20))(cos(x)−3sin(x))  y_p =(1/4)(sin(x)−cos(x))+(1/(20))(−3sin(x)+cos(x))  y=y_p +y_h
$${r}^{\mathrm{2}} +\mathrm{3}{r}+\mathrm{2}=\mathrm{0} \\ $$$${r}=−\mathrm{1}\:\:\:\:{r}=−\mathrm{2} \\ $$$${y}_{{h}} ={C}_{\mathrm{1}} {e}^{−{x}} ×{C}_{\mathrm{2}} {e}^{−\mathrm{2}{x}} \\ $$$${W}=\begin{vmatrix}{{e}^{−{x}} }&{{e}^{−\mathrm{3}{x}} }\\{−{e}^{−{x}} }&{−\mathrm{3}{e}^{−\mathrm{3}{x}} }\end{vmatrix}=−\mathrm{3}{e}^{−\mathrm{4}{x}} +{e}^{−\mathrm{4}{x}} =−\mathrm{2}{e}^{−\mathrm{4}{x}} \\ $$$${v}_{\mathrm{1}} =\int\frac{{sin}\left({x}\right){e}^{−\mathrm{3}{x}} }{\mathrm{2}{e}^{−\mathrm{4}{x}} }{dx}=\frac{{e}^{{x}} }{\mathrm{4}}\left({sin}\left({x}\right)−{cos}\left({x}\right)\right) \\ $$$${v}_{\mathrm{2}} =−\int\frac{{sin}\left({x}\right){e}^{−{x}} }{\mathrm{2}{e}^{−\mathrm{4}{x}} }{dx}=\frac{{e}^{\mathrm{3}{x}} }{\mathrm{20}}\left({cos}\left({x}\right)−\mathrm{3}{sin}\left({x}\right)\right) \\ $$$${y}_{{p}} =\frac{\mathrm{1}}{\mathrm{4}}\left({sin}\left({x}\right)−{cos}\left({x}\right)\right)+\frac{\mathrm{1}}{\mathrm{20}}\left(−\mathrm{3}{sin}\left({x}\right)+{cos}\left({x}\right)\right) \\ $$$${y}={y}_{{p}} +{y}_{{h}} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *