Question Number 171031 by cortano1 last updated on 06/Jun/22
Answered by a.lgnaoui last updated on 07/Jun/22
$$={Log}\left(\frac{{a}}{\mathrm{1}−{b}}\right)+{Log}\left(\frac{\mathrm{1}−{b}}{\mathrm{1}+{b}}\right)={Log}\left(\frac{{a}}{\mathrm{1}−{b}}×\frac{\mathrm{1}−{b}}{\mathrm{1}+{b}}\right)={Log}\left(\frac{{a}}{\mathrm{1}+{b}}\right) \\ $$$$={Log}\left(\frac{{a}−{b}+\mathrm{1}}{{a}+{b}+\mathrm{1}}\right)^{\mathrm{3}} =\mathrm{3}{Log}\left(\frac{{a}+\mathrm{1}−{b}}{{a}+\mathrm{1}+{b}}\right)=\mathrm{3}{Log}\left(\frac{\left({a}+\mathrm{1}\right)^{\mathrm{2}} −{b}^{\mathrm{2}} }{\left({a}+\mathrm{1}+{b}\right)^{\mathrm{2}} }\right) \\ $$$$=\mathrm{3}{Log}\left[\frac{\left({a}+\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}{\left({a}+\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{b}\left({a}+\mathrm{1}\right)}\right]=\mathrm{3}{Log}\left[\frac{\left({a}+\mathrm{1}\right)\left(\left({a}+\mathrm{1}\right)−\left(\mathrm{1}−{a}\right)\right)}{\left({a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1}+\mathrm{2}\left({a}+\mathrm{1}\right){b}+{b}^{\mathrm{2}} \right.}\right]= \\ $$$$=\mathrm{3}{Log}\left[\frac{\mathrm{2}{a}\left({a}+\mathrm{1}\right)}{\mathrm{2}+\mathrm{2}{a}+\mathrm{2}\left({a}+\mathrm{1}\right){b}}\right]=\mathrm{3}{Log}\left[\frac{\mathrm{2}{a}\left({a}+\mathrm{1}\right)}{\mathrm{2}\left({a}+\mathrm{1}\right)\left(\mathrm{1}+{b}\right)}\right]= \\ $$$$=\mathrm{3}{Log}\left(\frac{{a}}{\mathrm{1}+{b}}\right) \\ $$$$\:\:{donc}\:\:\:\frac{{Log}\left(\frac{{a}}{\mathrm{1}−{b}}\right)+{Log}\left(\frac{\mathrm{1}−{b}}{\mathrm{1}+{b}}\right)}{{Log}\left(\frac{{a}−{b}+\mathrm{1}}{{a}+{b}+\mathrm{1}}\right)^{\mathrm{3}} }=\frac{{Log}\left(\frac{{a}}{{b}+\mathrm{1}}\right)}{\mathrm{3}{Log}\left(\frac{{a}}{{b}+\mathrm{1}}\right)}\:\:=\frac{\mathrm{1}}{\mathrm{3}}\:\:\: \\ $$