Question Number 171046 by Beginner last updated on 06/Jun/22
Answered by thfchristopher last updated on 07/Jun/22
$$\mathrm{Let}\:{u}={a}+{bx} \\ $$$${du}={bdx},\:{x}=\frac{{u}−{a}}{{b}} \\ $$$$\therefore\int\frac{{x}^{\mathrm{2}} }{\left({a}+{bx}\right)^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{{b}^{\mathrm{3}} }\int\frac{\left({u}−{a}\right)^{\mathrm{2}} }{{u}^{\mathrm{2}} }{du} \\ $$$$=\frac{\mathrm{1}}{{b}^{\mathrm{3}} }\int\frac{{u}^{\mathrm{2}} −\mathrm{2}{au}+{a}^{\mathrm{2}} }{{u}^{\mathrm{2}} }{du} \\ $$$$=\frac{\mathrm{1}}{{b}^{\mathrm{3}} }\left(\int{du}−\mathrm{2}{a}\int\frac{\mathrm{1}}{{u}}{du}+{a}^{\mathrm{2}} \int\frac{\mathrm{1}}{{u}^{\mathrm{2}} }{du}\right) \\ $$$$=\frac{\mathrm{1}}{{b}^{\mathrm{3}} }\left({u}−\mathrm{2}{a}\mathrm{ln}\:{u}−\frac{{a}^{\mathrm{2}} }{{u}}\right)+{C} \\ $$$$=\frac{\mathrm{1}}{{b}^{\mathrm{3}} }\left[\left({a}+{bx}\right)+\mathrm{2}{a}\mathrm{ln}\:\left({a}+{bx}\right)−\frac{{a}^{\mathrm{2}} }{\left({a}+{bx}\right)}\right]+{C} \\ $$
Answered by floor(10²Eta[1]) last updated on 06/Jun/22
$$\mathrm{I}=\int\left(\frac{\mathrm{x}}{\mathrm{a}+\mathrm{bx}}\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$\mathrm{x}=\left(\mathrm{a}+\mathrm{bx}\right)\mathrm{q}+\mathrm{r}=\mathrm{bqx}+\mathrm{aq}+\mathrm{r} \\ $$$$\Rightarrow\mathrm{bq}=\mathrm{1},\:\mathrm{aq}+\mathrm{r}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{q}=\frac{\mathrm{1}}{\mathrm{b}},\:\mathrm{r}=−\frac{\mathrm{a}}{\mathrm{b}} \\ $$$$\mathrm{I}=\int\left(\frac{\mathrm{1}}{\mathrm{b}}−\frac{\mathrm{a}}{\mathrm{b}\left(\mathrm{a}+\mathrm{bx}\right)}\right)^{\mathrm{2}} \mathrm{dx} \\ $$$$=\int\left(\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} }−\frac{\mathrm{2a}}{\mathrm{b}^{\mathrm{2}} \left(\mathrm{a}+\mathrm{bx}\right)}+\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} \left(\mathrm{a}+\mathrm{bx}\right)^{\mathrm{2}} }\right)\mathrm{dx} \\ $$$$=\frac{\mathrm{x}}{\mathrm{b}^{\mathrm{2}} }−\frac{\mathrm{2aln}\left(\mathrm{a}+\mathrm{bx}\right)}{\mathrm{b}^{\mathrm{3}} }−\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{3}} }\left(\frac{\mathrm{1}}{\mathrm{a}+\mathrm{bx}}\right)+\mathrm{C} \\ $$$$\left[\mathrm{easily}\:\mathrm{done}\:\mathrm{by}\:\mathrm{letting}\:\mathrm{u}=\mathrm{a}+\mathrm{bx}\right] \\ $$