Menu Close

Question-171046




Question Number 171046 by Beginner last updated on 06/Jun/22
Answered by thfchristopher last updated on 07/Jun/22
Let u=a+bx  du=bdx, x=((u−a)/b)  ∴∫(x^2 /((a+bx)^2 ))dx  =(1/b^3 )∫(((u−a)^2 )/u^2 )du  =(1/b^3 )∫((u^2 −2au+a^2 )/u^2 )du  =(1/b^3 )(∫du−2a∫(1/u)du+a^2 ∫(1/u^2 )du)  =(1/b^3 )(u−2aln u−(a^2 /u))+C  =(1/b^3 )[(a+bx)+2aln (a+bx)−(a^2 /((a+bx)))]+C
Letu=a+bxdu=bdx,x=uabx2(a+bx)2dx=1b3(ua)2u2du=1b3u22au+a2u2du=1b3(du2a1udu+a21u2du)=1b3(u2alnua2u)+C=1b3[(a+bx)+2aln(a+bx)a2(a+bx)]+C
Answered by floor(10²Eta[1]) last updated on 06/Jun/22
I=∫((x/(a+bx)))^2 dx  x=(a+bx)q+r=bqx+aq+r  ⇒bq=1, aq+r=0  ⇒q=(1/b), r=−(a/b)  I=∫((1/b)−(a/(b(a+bx))))^2 dx  =∫((1/b^2 )−((2a)/(b^2 (a+bx)))+(a^2 /(b^2 (a+bx)^2 )))dx  =(x/b^2 )−((2aln(a+bx))/b^3 )−(a^2 /b^3 )((1/(a+bx)))+C  [easily done by letting u=a+bx]
I=(xa+bx)2dxx=(a+bx)q+r=bqx+aq+rbq=1,aq+r=0q=1b,r=abI=(1bab(a+bx))2dx=(1b22ab2(a+bx)+a2b2(a+bx)2)dx=xb22aln(a+bx)b3a2b3(1a+bx)+C[easilydonebylettingu=a+bx]

Leave a Reply

Your email address will not be published. Required fields are marked *