Question Number 171574 by cortano1 last updated on 18/Jun/22
Answered by mr W last updated on 18/Jun/22
Commented by mr W last updated on 18/Jun/22
$$\mathrm{sin}\:\beta=\frac{{b}}{\mathrm{2}{r}}=\frac{{b}}{{d}} \\ $$$$\mathrm{sin}\:\alpha=\frac{{a}}{\mathrm{2}{r}}=\frac{{a}}{{d}} \\ $$$$\alpha+\beta=\theta \\ $$$$\mathrm{cos}\:\left(\alpha+\beta\right)=\mathrm{cos}\:\theta \\ $$$$\sqrt{\left(\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{d}^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{d}^{\mathrm{2}} }\right)}−\frac{{a}}{{d}}×\frac{{b}}{{d}}=\mathrm{cos}\:\theta \\ $$$$\left({d}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\left({d}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)=\left({ab}+{d}^{\mathrm{2}} \:\mathrm{cos}\:\theta\right)^{\mathrm{2}} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\theta\:{d}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta \\ $$$${d}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta}}{\mathrm{sin}\:\theta} \\ $$$$\Rightarrow{r}=\frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta}}{\mathrm{2}\:\mathrm{sin}\:\theta} \\ $$$$\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} +\mathrm{2}×\mathrm{3}×\mathrm{5}\:\mathrm{cos}\:\mathrm{60}°}}{\mathrm{2}\:\mathrm{sin}\:\mathrm{60}°}=\frac{\mathrm{7}\sqrt{\mathrm{3}}}{\:\mathrm{3}} \\ $$
Commented by infinityaction last updated on 18/Jun/22
$${nice}\:{sir} \\ $$
Commented by Tawa11 last updated on 18/Jun/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$