Menu Close

Question-171667




Question Number 171667 by Mastermind last updated on 19/Jun/22
Answered by mindispower last updated on 19/Jun/22
ln(y)=ln(x)ln(cos(x))+(1/2)ln(x^2 −5x+3log_4 (x))  ((y′)/y)=(1/x)ln(cos(x))−tg(x)ln(x)+((2x−5+(3/(xln(4))))/(2(x^2 −5x+3log_4 (x))))  y′=(cos(x))^(ln(x)) (√(x^2 −5x+3log_4 (x)))(((ln(cos(x)))/x)−tg(x)((ln(x))/x)+((2x−5x+(3/(xln(4))))/(2(x^2 −5x+3log_4 (x))))
$${ln}\left({y}\right)={ln}\left({x}\right){ln}\left({cos}\left({x}\right)\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{3}{log}_{\mathrm{4}} \left({x}\right)\right) \\ $$$$\frac{{y}'}{{y}}=\frac{\mathrm{1}}{{x}}{ln}\left({cos}\left({x}\right)\right)−{tg}\left({x}\right){ln}\left({x}\right)+\frac{\mathrm{2}{x}−\mathrm{5}+\frac{\mathrm{3}}{{xln}\left(\mathrm{4}\right)}}{\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{3}{log}_{\mathrm{4}} \left({x}\right)\right)} \\ $$$${y}'=\left({cos}\left({x}\right)\right)^{{ln}\left({x}\right)} \sqrt{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{3}{log}_{\mathrm{4}} \left({x}\right)}\left(\frac{{ln}\left({cos}\left({x}\right)\right)}{{x}}−{tg}\left({x}\right)\frac{{ln}\left({x}\right)}{{x}}+\frac{\mathrm{2}{x}−\mathrm{5}{x}+\frac{\mathrm{3}}{{xln}\left(\mathrm{4}\right)}}{\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{3}{log}_{\mathrm{4}} \left({x}\right)\right.}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *