Question Number 171693 by cortano1 last updated on 20/Jun/22
Answered by som(math1967) last updated on 20/Jun/22
$$\:\:{tan}\mathrm{4}{x}=\frac{\mathrm{1}+{sinx}+{cosx}}{\mathrm{1}−{sinx}+{cosx}} \\ $$$$\Rightarrow\frac{{sin}\mathrm{4}{x}}{{cos}\mathrm{4}{x}}=\frac{\mathrm{1}+{sinx}+{cosx}}{\mathrm{1}−{sinx}+{cosx}} \\ $$$$\Rightarrow{sin}\mathrm{4}{x}−{sinxsin}\mathrm{4}{x}+{sin}\mathrm{4}{xcosx} \\ $$$$\:\:\:\:\:={cos}\mathrm{4}{x}+{sinxcos}\mathrm{4}{x}+{cos}\mathrm{4}{xcosx} \\ $$$$\Rightarrow{sin}\mathrm{4}{x}+{sin}\mathrm{4}{xcosx}−{sinxcos}\mathrm{4}{x} \\ $$$$\:\:\:={cos}\mathrm{4}{x}+{cos}\mathrm{4}{xcosx}+{sin}\mathrm{4}{xsinx} \\ $$$$\Rightarrow{sin}\mathrm{4}{x}+{sin}\left(\mathrm{4}{x}−{x}\right)={cos}\mathrm{4}{x}+{cos}\left(\mathrm{4}{x}−{x}\right) \\ $$$$\Rightarrow\mathrm{2}{sin}\frac{\mathrm{7}{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}=\mathrm{2}{cos}\frac{\mathrm{7}{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}} \\ $$$$\Rightarrow\:{sin}\frac{\mathrm{7}{x}}{\mathrm{2}}={cos}\frac{\mathrm{7}{x}}{\mathrm{2}}\:\:\left[\frac{{x}}{\mathrm{2}}<\frac{\pi}{\mathrm{2}}\right] \\ $$$$\Rightarrow{sin}\frac{\mathrm{7}{x}}{\mathrm{2}}={sin}\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{7}{x}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\frac{\mathrm{7}{x}}{\mathrm{2}}=\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{7}{x}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{7}{x}=\frac{\pi}{\mathrm{2}} \\ $$$$\therefore\:\boldsymbol{{x}}=\frac{\boldsymbol{\pi}}{\mathrm{14}} \\ $$
Commented by cortano1 last updated on 20/Jun/22
$${nice} \\ $$
Answered by cortano1 last updated on 21/Jun/22