Menu Close

Question-17187




Question Number 17187 by virus last updated on 02/Jul/17
Answered by Tinkutara last updated on 02/Jul/17
((a_1  + a_2  + ... + a_p )/(a_1  + a_2  + ... + a_q )) = (((p/2)[2a_1  + (p − 1)d])/((q/2)[2a_1  + (q − 1)d]))  = ((p[2a_1  + (p − 1)d])/(q[2a_1  + (q − 1)d])) = (p^2 /q^2 ) (Given)  2a_1 q + (p − 1)dq = 2a_1 p + (q − 1)dp  2a_1 (p − q) = d(pq − q − pq + p)  2a_1  = d ⇒ a_1  = (d/2)  Now (a_6 /a_(12) ) = ((a_1  + 5d)/(a_1  + 11d)) = (((11d)/2)/((23d)/2)) = ((11)/(23))
a1+a2++apa1+a2++aq=p2[2a1+(p1)d]q2[2a1+(q1)d]=p[2a1+(p1)d]q[2a1+(q1)d]=p2q2(Given)2a1q+(p1)dq=2a1p+(q1)dp2a1(pq)=d(pqqpq+p)2a1=da1=d2Nowa6a12=a1+5da1+11d=11d223d2=1123
Answered by RasheedSoomro last updated on 03/Jul/17
AnOther way  ((a_1 +a_2 +...a_p )/(a_1 +a_2 +...a_q ))=(p^2 /q^2 )   ,    (a_6 /a_(12) )=?  [We require ((a_1 +5d)/(a_1 +11d))]     (((p/2)[2a_1 +(p−1)d])/((q/2)[2a_1 +(q−1)d]))=(p^2 /q^2 )  ((a_1 +(((p−1)/2))d)/(a_1 +(((q−1)/2))d))=(p/q)  Now let ((p−1)/2)=5⇒p=11            and ((q−1)/2)=11⇒q=23  So  (a_6 /a_(12) )=((a_1 +5d)/(a_1 +11d))=((11)/(23))
AnOtherwaya1+a2+apa1+a2+aq=p2q2,a6a12=?[Werequirea1+5da1+11d]p2[2a1+(p1)d]q2[2a1+(q1)d]=p2q2a1+(p12)da1+(q12)d=pqNowletp12=5p=11andq12=11q=23Soa6a12=a1+5da1+11d=1123
Answered by myintkhaing last updated on 03/Jul/17
another way  Let a_1 +a_2 +a_3 +...+a_p =S_p =kp^2  and  a_1 +a_2 +a_3 +...+a_q =S_q =kq^2   So, S_n = kn^2   Thus  a_6 = S_6 −S_5 =11k and a_(12) =S_(12) −S_(11) =23k  ∴ (a_6 /a_(12) ) = ((11)/(23))
anotherwayLeta1+a2+a3++ap=Sp=kp2anda1+a2+a3++aq=Sq=kq2So,Sn=kn2Thusa6=S6S5=11kanda12=S12S11=23ka6a12=1123
Commented by virus last updated on 15/Jul/17
yes thank you
yesthankyou
Commented by RasheedSoomro last updated on 03/Jul/17
More efficient way than that of mine!
Moreefficientwaythanthatofmine!

Leave a Reply

Your email address will not be published. Required fields are marked *