Question Number 17187 by virus last updated on 02/Jul/17

Answered by Tinkutara last updated on 02/Jul/17
![((a_1 + a_2 + ... + a_p )/(a_1 + a_2 + ... + a_q )) = (((p/2)[2a_1 + (p − 1)d])/((q/2)[2a_1 + (q − 1)d])) = ((p[2a_1 + (p − 1)d])/(q[2a_1 + (q − 1)d])) = (p^2 /q^2 ) (Given) 2a_1 q + (p − 1)dq = 2a_1 p + (q − 1)dp 2a_1 (p − q) = d(pq − q − pq + p) 2a_1 = d ⇒ a_1 = (d/2) Now (a_6 /a_(12) ) = ((a_1 + 5d)/(a_1 + 11d)) = (((11d)/2)/((23d)/2)) = ((11)/(23))](https://www.tinkutara.com/question/Q17188.png)
Answered by RasheedSoomro last updated on 03/Jul/17
![AnOther way ((a_1 +a_2 +...a_p )/(a_1 +a_2 +...a_q ))=(p^2 /q^2 ) , (a_6 /a_(12) )=? [We require ((a_1 +5d)/(a_1 +11d))] (((p/2)[2a_1 +(p−1)d])/((q/2)[2a_1 +(q−1)d]))=(p^2 /q^2 ) ((a_1 +(((p−1)/2))d)/(a_1 +(((q−1)/2))d))=(p/q) Now let ((p−1)/2)=5⇒p=11 and ((q−1)/2)=11⇒q=23 So (a_6 /a_(12) )=((a_1 +5d)/(a_1 +11d))=((11)/(23))](https://www.tinkutara.com/question/Q17251.png)
Answered by myintkhaing last updated on 03/Jul/17

Commented by virus last updated on 15/Jul/17

Commented by RasheedSoomro last updated on 03/Jul/17
