Menu Close

Question-172144




Question Number 172144 by mnjuly1970 last updated on 23/Jun/22
Answered by infinityaction last updated on 23/Jun/22
Commented by infinityaction last updated on 23/Jun/22
   cosα = (2/r)   and    sinα  =  (r/6)         cos^2 α + sin^2 α  =  (4/r^2 ) +  (r^2 /(36))       let   r^2   =  p         1  =   (4/p) + (p/(36))       p^2 −36p+144 = 0       p  =  r^2   =  18−6(√5)
cosα=2randsinα=r6cos2α+sin2α=4r2+r236letr2=p1=4p+p36p236p+144=0p=r2=1865
Commented by mr W last updated on 23/Jun/22
nice solution!
nicesolution!
Commented by mnjuly1970 last updated on 23/Jun/22
thank you so much ...
thankyousomuch
Answered by mr W last updated on 23/Jun/22
Commented by mr W last updated on 23/Jun/22
yes, i found it too. thanks!
yes,ifoundittoo.thanks!
Commented by mr W last updated on 23/Jun/22
γ=90°−α=45°+β  ((sin α)/d)=((sin 45°)/6)   ...(i)  (d/(sin 45°))=(4/(sin (45°+β)))=(4/(cos α))   ...(ii)  (i)×(ii):  ((sin α)/(sin 45°))=((4 sin 45°)/(6 cos α))  ⇒6 sin α cos α=4 sin^2  45°  ⇒3 sin 2α=2 ⇒sin 2α=(2/3)  cos 2α=2 cos^2  α−1=(√(1−((2/( 3)))^2 ))=((√5)/3)  ⇒cos α=((√(3+(√5)))/( (√6)))  d=((4 sin 45°)/(cos α))=((4(√3))/( (√(3+(√5)))))  area of square   =((d/( (√2))))^2 =(d^2 /2)=((8×3)/(3+(√5)))=6(3−(√5))
γ=90°α=45°+βsinαd=sin45°6(i)dsin45°=4sin(45°+β)=4cosα(ii)(i)×(ii):sinαsin45°=4sin45°6cosα6sinαcosα=4sin245°3sin2α=2sin2α=23cos2α=2cos2α1=1(23)2=53cosα=3+56d=4sin45°cosα=433+5areaofsquare=(d2)2=d22=8×33+5=6(35)
Commented by mnjuly1970 last updated on 23/Jun/22
thanks alot sir
thanksalotsir
Commented by infinityaction last updated on 23/Jun/22
(d^2 /2) = (1/2)×((16×3)/(3+(√5))) = 6(3−(√5))= 18−6(√5)
d22=12×16×33+5=6(35)=1865
Commented by Tawa11 last updated on 24/Jun/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *