Menu Close

Question-172531




Question Number 172531 by Mikenice last updated on 28/Jun/22
Commented by GalaxyBills last updated on 29/Jun/22
$$ \\ $$
Answered by MJS_new last updated on 28/Jun/22
x=2
$${x}=\mathrm{2} \\ $$
Commented by Mikenice last updated on 28/Jun/22
please show the workings
$${please}\:{show}\:{the}\:{workings} \\ $$
Commented by MJS_new last updated on 28/Jun/22
for obvious solutions: no workings, just used  my brain.  for approximate solutions: just used a good  calculator
$$\mathrm{for}\:\mathrm{obvious}\:\mathrm{solutions}:\:\mathrm{no}\:\mathrm{workings},\:\mathrm{just}\:\mathrm{used} \\ $$$$\mathrm{my}\:\mathrm{brain}. \\ $$$$\mathrm{for}\:\mathrm{approximate}\:\mathrm{solutions}:\:\mathrm{just}\:\mathrm{used}\:\mathrm{a}\:\mathrm{good} \\ $$$$\mathrm{calculator} \\ $$
Answered by mr W last updated on 28/Jun/22
5^x =36(((97)/(36))−x)  5^(x−((97)/(36))) =36(((97)/(36))−x)5^(−((97)/(36)))   (((97)/(36))−x)5^(((97)/(36))−x) =(5^((97)/(36)) /(36))  {(((97)/(36))−x)ln 5}e^((((97)/(36))−x)ln 5) =((5^((97)/(36)) ln 5)/(36))  (((97)/(36))−x)ln 5=W(((5^((97)/(36)) ln 5)/(36)))  ⇒x=((97)/(36))−(1/(ln 5))W(((5^((97)/(36)) ln 5)/(36)))=2
$$\mathrm{5}^{{x}} =\mathrm{36}\left(\frac{\mathrm{97}}{\mathrm{36}}−{x}\right) \\ $$$$\mathrm{5}^{{x}−\frac{\mathrm{97}}{\mathrm{36}}} =\mathrm{36}\left(\frac{\mathrm{97}}{\mathrm{36}}−{x}\right)\mathrm{5}^{−\frac{\mathrm{97}}{\mathrm{36}}} \\ $$$$\left(\frac{\mathrm{97}}{\mathrm{36}}−{x}\right)\mathrm{5}^{\frac{\mathrm{97}}{\mathrm{36}}−{x}} =\frac{\mathrm{5}^{\frac{\mathrm{97}}{\mathrm{36}}} }{\mathrm{36}} \\ $$$$\left\{\left(\frac{\mathrm{97}}{\mathrm{36}}−{x}\right)\mathrm{ln}\:\mathrm{5}\right\}{e}^{\left(\frac{\mathrm{97}}{\mathrm{36}}−{x}\right)\mathrm{ln}\:\mathrm{5}} =\frac{\mathrm{5}^{\frac{\mathrm{97}}{\mathrm{36}}} \mathrm{ln}\:\mathrm{5}}{\mathrm{36}} \\ $$$$\left(\frac{\mathrm{97}}{\mathrm{36}}−{x}\right)\mathrm{ln}\:\mathrm{5}={W}\left(\frac{\mathrm{5}^{\frac{\mathrm{97}}{\mathrm{36}}} \mathrm{ln}\:\mathrm{5}}{\mathrm{36}}\right) \\ $$$$\Rightarrow{x}=\frac{\mathrm{97}}{\mathrm{36}}−\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{5}}{W}\left(\frac{\mathrm{5}^{\frac{\mathrm{97}}{\mathrm{36}}} \mathrm{ln}\:\mathrm{5}}{\mathrm{36}}\right)=\mathrm{2} \\ $$
Commented by Tawa11 last updated on 30/Jun/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by GalaxyBills last updated on 29/Jun/22
  Supposing x = z    5ᶻ + 36z = 97    5ᶻ + 36z= 25 + 72    By comparing    5ᶻ = 5²  z = 2    also,  36z = 72  z = 2    Hence x=2    this is given one value of x♨️🤲
$$ \\ $$Supposing x = z

5ᶻ + 36z = 97

5ᶻ + 36z= 25 + 72

By comparing

5ᶻ = 5²
z = 2

also,
36z = 72
z = 2

Hence x=2

this is given one value of x♨️🤲

Commented by mr W last updated on 29/Jun/22
can you solve with this method also  the eqn. 5^x +36x=98?
$${can}\:{you}\:{solve}\:{with}\:{this}\:{method}\:{also} \\ $$$${the}\:{eqn}.\:\mathrm{5}^{{x}} +\mathrm{36}{x}=\mathrm{98}? \\ $$
Answered by GalaxyBills last updated on 29/Jun/22
$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *