Question Number 172601 by Mikenice last updated on 29/Jun/22
Answered by Rasheed.Sindhi last updated on 30/Jun/22
$$\bullet\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{75}}{\mathrm{16}}\right)−\mathrm{log}_{\mathrm{2}} \left[\frac{\left(\frac{\mathrm{25}}{\mathrm{81}}\right)^{\mathrm{3}/\mathrm{4}} \left(\frac{\mathrm{25}}{\mathrm{81}}\right)^{\mathrm{1}/\mathrm{4}} }{\left(\frac{\mathrm{125}}{\mathrm{405}}\right)^{\mathrm{1}/\mathrm{2}} }\right]^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{log}_{\mathrm{2}} \mathrm{2}^{\mathrm{15}} +\mathrm{log}_{\mathrm{2}} \mathrm{3}^{−\mathrm{15}} \right) \\ $$$$\left[\frac{\left(\frac{\mathrm{25}}{\mathrm{81}}\right)^{\mathrm{3}/\mathrm{4}} \left(\frac{\mathrm{25}}{\mathrm{81}}\right)^{\mathrm{1}/\mathrm{4}} }{\left(\frac{\mathrm{125}}{\mathrm{405}}\right)^{\mathrm{1}/\mathrm{2}} }\right]^{\mathrm{2}} =\left[\frac{\left(\frac{\mathrm{25}}{\mathrm{81}}\right)^{\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}} }{\left(\frac{\mathrm{125}}{\mathrm{405}}\right)^{\mathrm{1}/\mathrm{2}} }\right]^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:=\frac{\left(\frac{\mathrm{25}}{\mathrm{81}}\right)^{\mathrm{2}} }{\left(\left(\frac{\mathrm{125}}{\mathrm{405}}\right)^{\mathrm{1}/\mathrm{2}} \right)^{\mathrm{2}} }=\frac{\mathrm{5}^{\mathrm{4}} }{\mathrm{3}^{\mathrm{8}} }×\frac{\mathrm{3}^{\mathrm{4}} ×\mathrm{5}}{\mathrm{5}^{\mathrm{3}} }=\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{4}} } \\ $$$$\bullet\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{75}}{\mathrm{16}}\right)−\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{4}} }\right)+\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{log}_{\mathrm{2}} \mathrm{2}^{\mathrm{15}} +\mathrm{log}_{\mathrm{2}} \mathrm{3}^{−\mathrm{15}} \right) \\ $$$$\bullet\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{75}}{\mathrm{16}}\boldsymbol{\div}\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{4}} }\right)+\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{log}_{\mathrm{2}} \mathrm{2}^{\mathrm{15}} ×\mathrm{3}^{−\mathrm{15}} \right) \\ $$$$\bullet\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{75}}{\mathrm{16}}×\frac{\mathrm{3}^{\mathrm{4}} }{\mathrm{5}^{\mathrm{2}} }\right)+\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{log}_{\mathrm{2}} \left(\mathrm{2}^{\mathrm{15}} ×\mathrm{3}^{−\mathrm{15}} \right)\right. \\ $$$$\bullet\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{3}^{\mathrm{5}} }{\mathrm{2}^{\mathrm{4}} }\right)+\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{2}^{\mathrm{5}} }{\mathrm{3}^{\mathrm{5}} }\right) \\ $$$$\bullet\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{3}^{\mathrm{5}} }{\mathrm{2}^{\mathrm{4}} }×\frac{\mathrm{2}^{\mathrm{5}} }{\mathrm{3}^{\mathrm{5}} }\right) \\ $$$$\bullet\mathrm{log}_{\mathrm{2}} \left(\mathrm{2}\right)=\mathrm{1} \\ $$