Question Number 172628 by mnjuly1970 last updated on 29/Jun/22
Commented by mr W last updated on 29/Jun/22
$${maybe}\:\frac{\mathrm{2}}{\mathrm{tan}\:\gamma}=\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}\:? \\ $$
Commented by mnjuly1970 last updated on 29/Jun/22
$$\:\:\mathrm{yes}\:\:\mathrm{sir}\:\:\mathrm{W}\:…\mathrm{thanks}\:\mathrm{alot} \\ $$
Answered by mr W last updated on 29/Jun/22
$$\frac{{BM}}{\mathrm{sin}\:\alpha}=\frac{{AM}}{\mathrm{sin}\:\left(\gamma+\alpha\right)}\:\:\:…\left({i}\right) \\ $$$$\frac{\mathrm{sin}\:\beta}{{MC}}=\frac{\mathrm{sin}\:\left(\gamma−\beta\right)}{{AM}}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)×\left({ii}\right): \\ $$$$\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\alpha}=\frac{\mathrm{sin}\:\left(\gamma−\beta\right)}{\mathrm{sin}\:\left(\gamma+\alpha\right)}=\frac{\mathrm{sin}\:\gamma\:\mathrm{cos}\:\beta−\mathrm{cos}\:\gamma\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\gamma\:\mathrm{cos}\:\alpha+\mathrm{cos}\:\gamma\:\mathrm{sin}\:\alpha} \\ $$$$\mathrm{1}=\frac{\frac{\mathrm{tan}\:\gamma}{\mathrm{tan}\:\beta}−\mathrm{1}}{\frac{\mathrm{tan}\:\gamma}{\mathrm{tan}\:\alpha}+\mathrm{1}} \\ $$$$\Rightarrow\frac{\mathrm{2}}{\mathrm{tan}\:\gamma}=\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{1}}{\mathrm{tan}\:\alpha} \\ $$
Commented by Tawa11 last updated on 30/Jun/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$