Menu Close

Question-172628




Question Number 172628 by mnjuly1970 last updated on 29/Jun/22
Commented by mr W last updated on 29/Jun/22
maybe (2/(tan γ))=(1/(tan β))−(1/(tan α)) ?
$${maybe}\:\frac{\mathrm{2}}{\mathrm{tan}\:\gamma}=\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}\:? \\ $$
Commented by mnjuly1970 last updated on 29/Jun/22
  yes  sir  W ...thanks alot
$$\:\:\mathrm{yes}\:\:\mathrm{sir}\:\:\mathrm{W}\:…\mathrm{thanks}\:\mathrm{alot} \\ $$
Answered by mr W last updated on 29/Jun/22
((BM)/(sin α))=((AM)/(sin (γ+α)))   ...(i)  ((sin β)/(MC))=((sin (γ−β))/(AM))   ...(ii)  (i)×(ii):  ((sin β)/(sin α))=((sin (γ−β))/(sin (γ+α)))=((sin γ cos β−cos γ sin β)/(sin γ cos α+cos γ sin α))  1=((((tan γ)/(tan β))−1)/(((tan γ)/(tan α))+1))  ⇒(2/(tan γ))=(1/(tan β))−(1/(tan α))
$$\frac{{BM}}{\mathrm{sin}\:\alpha}=\frac{{AM}}{\mathrm{sin}\:\left(\gamma+\alpha\right)}\:\:\:…\left({i}\right) \\ $$$$\frac{\mathrm{sin}\:\beta}{{MC}}=\frac{\mathrm{sin}\:\left(\gamma−\beta\right)}{{AM}}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)×\left({ii}\right): \\ $$$$\frac{\mathrm{sin}\:\beta}{\mathrm{sin}\:\alpha}=\frac{\mathrm{sin}\:\left(\gamma−\beta\right)}{\mathrm{sin}\:\left(\gamma+\alpha\right)}=\frac{\mathrm{sin}\:\gamma\:\mathrm{cos}\:\beta−\mathrm{cos}\:\gamma\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\gamma\:\mathrm{cos}\:\alpha+\mathrm{cos}\:\gamma\:\mathrm{sin}\:\alpha} \\ $$$$\mathrm{1}=\frac{\frac{\mathrm{tan}\:\gamma}{\mathrm{tan}\:\beta}−\mathrm{1}}{\frac{\mathrm{tan}\:\gamma}{\mathrm{tan}\:\alpha}+\mathrm{1}} \\ $$$$\Rightarrow\frac{\mathrm{2}}{\mathrm{tan}\:\gamma}=\frac{\mathrm{1}}{\mathrm{tan}\:\beta}−\frac{\mathrm{1}}{\mathrm{tan}\:\alpha} \\ $$
Commented by Tawa11 last updated on 30/Jun/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *