Question Number 172635 by Mikenice last updated on 29/Jun/22
Answered by MJS_new last updated on 29/Jun/22
$$\int\frac{\mathrm{4}^{{x}} }{\mathrm{4}^{{x}} +\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{4}^{{x}} +\mathrm{1}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{4}^{{x}} \:\mathrm{ln}\:\mathrm{4}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{4}}\int\frac{{dt}}{{t}}=\frac{\mathrm{ln}\:{t}}{\mathrm{ln}\:\mathrm{4}}= \\ $$$$=\frac{\mathrm{ln}\:\left(\mathrm{4}^{{x}} +\mathrm{1}\right)}{\mathrm{ln}\:\mathrm{4}}+\mathrm{C} \\ $$
Answered by floor(10²Eta[1]) last updated on 29/Jun/22
$$\mathrm{let}\:\mathrm{u}=\mathrm{4}^{\mathrm{x}} +\mathrm{1}\Rightarrow\mathrm{du}=\mathrm{4}^{\mathrm{x}} \mathrm{ln4dx} \\ $$$$\int\frac{\mathrm{4}^{\mathrm{x}} }{\mathrm{4}^{\mathrm{x}} +\mathrm{1}}\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{ln4}}\int\frac{\mathrm{du}}{\mathrm{u}}=\frac{\mathrm{ln}\mid\mathrm{u}\mid}{\mathrm{ln4}}=\frac{\mathrm{ln}\left(\mathrm{4}^{\mathrm{x}} +\mathrm{1}\right)}{\mathrm{ln4}}=\mathrm{log}_{\mathrm{4}} \left(\mathrm{4}^{\mathrm{x}} +\mathrm{1}\right)+\mathrm{C} \\ $$
Answered by Mathspace last updated on 30/Jun/22
$${I}=\int\:\frac{\mathrm{4}^{{x}} }{\mathrm{1}+\mathrm{4}^{{x}} }{dx}\:\:{we}\:{do}\:{the}\:{changement} \\ $$$$\mathrm{4}^{{x}} ={t}\:\Rightarrow{e}^{{xln}\left(\mathrm{4}\right)} ={t}\:\Rightarrow{xln}\mathrm{4}={lnt}\:\Rightarrow \\ $$$${x}=\frac{{lnt}}{\mathrm{2}{ln}\left(\mathrm{2}\right)}\:\Rightarrow \\ $$$${I}=\int\:\:\frac{{t}}{{t}+\mathrm{1}}\frac{{dt}}{\mathrm{2}{tln}\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{ln}\mathrm{2}}\int\frac{{dt}}{{t}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}{ln}\mathrm{2}}{ln}\mid{t}+\mathrm{1}\mid\:+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{ln}\mathrm{2}}{ln}\left(\mathrm{1}+\mathrm{4}^{{x}} \right)+{c} \\ $$
Commented by CElcedricjunior last updated on 30/Jun/22