Question Number 172662 by SANOGO last updated on 29/Jun/22
Answered by Mathspace last updated on 29/Jun/22
$$\left.{a}\right)\:\Delta\left({x},{y}\right)=\frac{{xy}}{{M}\left({x},{y}\right)}=\frac{\mathrm{1512}}{\mathrm{252}}=\mathrm{6} \\ $$$${x}={pd}\:{and}\:{y}={qd}\:\:{with}\left({p},{d}\right)=\mathrm{1} \\ $$$${x}+{y}=\mathrm{1512}\:\Rightarrow{d}\left({p}+{q}\right)=\mathrm{1512} \\ $$$$\Rightarrow{p}+{q}=\frac{\mathrm{1512}}{\mathrm{6}}=\mathrm{252} \\ $$$$\Rightarrow\left({p},{q}\right)\in\left\{\left(\mathrm{1},\mathrm{251}\right),\left(\mathrm{2},\mathrm{250}\right),\left(\mathrm{3},\mathrm{249}\right)…\left(\mathrm{251},\mathrm{1}\right)\right\} \\ $$$${we}\:{extract}\:{the}\:{couples}\:{wich}\:{verify} \\ $$$$\Delta\left({p},{q}\right)=\mathrm{1}… \\ $$$$\Rightarrow{x}=\mathrm{6}{p}\:{and}\:{y}=\mathrm{6}{q}… \\ $$
Commented by SANOGO last updated on 30/Jun/22
$${thank}\:{you} \\ $$
Commented by Mathspace last updated on 30/Jun/22
$${x}+{y}={pd}+{qd}=\left({p}+{q}\right){d} \\ $$$$=\mathrm{6}.\mathrm{252}=\mathrm{1512} \\ $$
Answered by puissant last updated on 30/Jun/22
$$\left.{b}\right)\: \\ $$$${posons}\:\delta={pgcd}\left({x};{y}\right)\:{dire}\:{cela}\:{renvoi}\:{a}: \\ $$$$\exists\:\left({x}';{y}'\right)\in\mathbb{N}^{\mathrm{2}} /\:{x}=\delta{x}'\:;\:\:{y}=\delta{y}'\:{et}\:{x}'\wedge{y}'=\mathrm{1} \\ $$$${xy}={pgcd}\left({x};{y}\right)\bullet{ppcm}\left({x};{y}\right) \\ $$$$\Rightarrow\:{ppcm}\left({x};{y}\right)=\delta{x}'{y}'=\mathrm{1440} \\ $$$${en}\:{meme}\:{temps},\:\delta\left({x}'+{y}'\right)=\mathrm{276} \\ $$$${donc}\:\delta/\mathrm{1440}\:{et}\:\delta/\mathrm{276}…. \\ $$$$ \\ $$$${A}\:{toi}\:{de}\:{conctinuer}. \\ $$
Answered by mr W last updated on 30/Jun/22
$$\left.{a}\right) \\ $$$${xy}=\mathrm{1512}=\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{3}} ×\mathrm{7} \\ $$$${LCM}=\mathrm{252}=\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{7} \\ $$$${number}\:\mathrm{1}=\:\mathrm{2}×\mathrm{3}×\mathrm{1} \\ $$$${number}\:\mathrm{2}=\:\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{7} \\ $$$$\left({x},\:{y}\right)=\left(\mathrm{2}×\mathrm{3}×\mathrm{1},\:\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{7}\right)=\left(\mathrm{6},\:\mathrm{252}\right)\:{or}\:\left(\mathrm{252},\:\mathrm{6}\right) \\ $$$$\left({x},\:{y}\right)=\left(\mathrm{2}^{\mathrm{2}} ×\mathrm{3}×\mathrm{1},\:\mathrm{2}×\mathrm{3}^{\mathrm{2}} ×\mathrm{7}\right)=\left(\mathrm{12},\:\mathrm{126}\right)\:{or}\:\left(\mathrm{126},\:\mathrm{12}\right) \\ $$$$\left({x},\:{y}\right)=\left(\mathrm{2}×\mathrm{3}^{\mathrm{2}} ×\mathrm{1},\:\mathrm{2}^{\mathrm{2}} ×\mathrm{3}×\mathrm{7}\right)=\left(\mathrm{18},\:\mathrm{84}\right)\:{or}\:\left(\mathrm{84},\:\mathrm{18}\right) \\ $$$$\left({x},\:{y}\right)=\left(\mathrm{2}×\mathrm{3}×\mathrm{7},\:\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{2}} ×\mathrm{1}\right)=\left(\mathrm{42},\:\mathrm{36}\right)\:{or}\:\left(\mathrm{36},\:\mathrm{42}\right) \\ $$
Answered by Rasheed.Sindhi last updated on 30/Jun/22
$$\left(\boldsymbol{\mathrm{c}}\right)\:\:\:{Let}\:{x}=\mathrm{24}{m}\:\&\:{y}=\mathrm{24}{n}\:{where}\: \\ $$$$\left({m},{n}\right)=\mathrm{1} \\ $$$${xy}=\mathrm{24}{m}\centerdot\mathrm{24}{n}=\mathrm{576}{mn}=\mathrm{16128} \\ $$$${mn}=\mathrm{28} \\ $$$${mn}=\mathrm{1}\centerdot\mathrm{28}=\mathrm{28}\centerdot\mathrm{1} \\ $$$${mn}=\mathrm{4}\centerdot\mathrm{7}=\mathrm{7}\centerdot\mathrm{4} \\ $$$$\left({m},{n}\right)=\left(\mathrm{1},\mathrm{28}\right),\left(\mathrm{28},\mathrm{1}\right),\left(\mathrm{4},\mathrm{7}\right),\left(\mathrm{7},\mathrm{4}\right) \\ $$$$\left({x},{y}\right)=\left(\mathrm{24}{m},\mathrm{24}{n}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{24},\mathrm{672}\right),\left(\mathrm{672},\mathrm{24}\right),\left(\mathrm{96},\mathrm{168}\right),\left(\mathrm{168},\mathrm{96}\right) \\ $$