Menu Close

Question-172744




Question Number 172744 by Adilali last updated on 30/Jun/22
Answered by aleks041103 last updated on 30/Jun/22
obv. x=0 is a solution.  if x<0→obv. no soln.  if x>0:  2^x ln(x)=ln(2)+ln(x)  ⇒(2^x −1)ln(x)=ln(2)  ⇒ln(x)=((ln(2))/(2^x −1))  for x>0  ln(x) is strictly increasing  ((ln(2))/(2^x −1)) is strictly decreasing  ⇒incr.=decr.  ⇒for x>0, exist at most 1 solution  x=1:(2^x −1)ln(x)=0<ln(2)  x=2:(2^x −1)ln(x)=3ln(2)>ln(2)  ⇒∃x_1 ∈(1,2), (2^x_1  −1)ln(x_1 )=ln(2)  numerically:  x=0 and x≈1.476
$${obv}.\:{x}=\mathrm{0}\:{is}\:{a}\:{solution}. \\ $$$${if}\:{x}<\mathrm{0}\rightarrow{obv}.\:{no}\:{soln}. \\ $$$${if}\:{x}>\mathrm{0}: \\ $$$$\mathrm{2}^{{x}} {ln}\left({x}\right)={ln}\left(\mathrm{2}\right)+{ln}\left({x}\right) \\ $$$$\Rightarrow\left(\mathrm{2}^{{x}} −\mathrm{1}\right){ln}\left({x}\right)={ln}\left(\mathrm{2}\right) \\ $$$$\Rightarrow{ln}\left({x}\right)=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}^{{x}} −\mathrm{1}} \\ $$$${for}\:{x}>\mathrm{0} \\ $$$${ln}\left({x}\right)\:{is}\:{strictly}\:{increasing} \\ $$$$\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}^{{x}} −\mathrm{1}}\:{is}\:{strictly}\:{decreasing} \\ $$$$\Rightarrow{incr}.={decr}. \\ $$$$\Rightarrow{for}\:{x}>\mathrm{0},\:{exist}\:{at}\:{most}\:\mathrm{1}\:{solution} \\ $$$${x}=\mathrm{1}:\left(\mathrm{2}^{{x}} −\mathrm{1}\right){ln}\left({x}\right)=\mathrm{0}<{ln}\left(\mathrm{2}\right) \\ $$$${x}=\mathrm{2}:\left(\mathrm{2}^{{x}} −\mathrm{1}\right){ln}\left({x}\right)=\mathrm{3}{ln}\left(\mathrm{2}\right)>{ln}\left(\mathrm{2}\right) \\ $$$$\Rightarrow\exists{x}_{\mathrm{1}} \in\left(\mathrm{1},\mathrm{2}\right),\:\left(\mathrm{2}^{{x}_{\mathrm{1}} } −\mathrm{1}\right){ln}\left({x}_{\mathrm{1}} \right)={ln}\left(\mathrm{2}\right) \\ $$$${numerically}: \\ $$$${x}=\mathrm{0}\:{and}\:{x}\approx\mathrm{1}.\mathrm{476} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *