Menu Close

Question-172818




Question Number 172818 by Mikenice last updated on 01/Jul/22
Answered by FelipeLz last updated on 02/Jul/22
x^4 +2x^2 +1 = (x^2 +1)^2   I = ∫((x^3 +x^2 +2x+1)/(x^4 +2x^2 +1))dx = ∫(A/(x^2 +1))dx+∫(B/((x^2 +1)^2 ))dx        A(x^2 +1)+B = x^3 +x^2 +2x+1        A(x^2 +1)+B = (x+1)x^2 +x+1+x        A(x^2 +1)+B = (x+1)(x^2 +1)+x        A = x+1  ∧  B = x  I = ∫((x+1)/(x^2 +1))dx+∫(x/((x^2 +1)^2 ))dx = ∫(x/(x^2 +1))dx+∫(1/(x^2 +1))dx+∫(x/((x^2 +1)^2 ))dx  I = (1/2)[ln(x^2 +1)−(1/(x^2 +1))]+tan^(−1) (x)+c
x4+2x2+1=(x2+1)2I=x3+x2+2x+1x4+2x2+1dx=Ax2+1dx+B(x2+1)2dxA(x2+1)+B=x3+x2+2x+1A(x2+1)+B=(x+1)x2+x+1+xA(x2+1)+B=(x+1)(x2+1)+xA=x+1B=xI=x+1x2+1dx+x(x2+1)2dx=xx2+1dx+1x2+1dx+x(x2+1)2dxI=12[ln(x2+1)1x2+1]+tan1(x)+c

Leave a Reply

Your email address will not be published. Required fields are marked *