Menu Close

Question-172912




Question Number 172912 by mnjuly1970 last updated on 03/Jul/22
Answered by FongXD last updated on 03/Jul/22
★ f(x)=f(x+4n)  ⇒ f′(x)=f′(x+4n)  ★ f(x)=f(x+1)+f(3x+2)  ⇒ f′(x)=f′(x+1)+3f′(3x+2)  • x=1, f′(1)=f′(2)+3f′(5)=f′(2)+3f′(1)  ⇒ f′(2)=−2f′(1)  • x=0, f′(0)=f′(1)+3f′(2)=f′(1)−6f′(1)  ⇒ f′(0)=−5f′(1)  • x=2, f′(2)=f′(3)+3f′(8)=−18+3f′(0)  ⇔ −2f′(1)=−18−15f′(1)  ⇒ f′(1)=−((18)/(13))
f(x)=f(x+4n)f(x)=f(x+4n)f(x)=f(x+1)+f(3x+2)f(x)=f(x+1)+3f(3x+2)x=1,f(1)=f(2)+3f(5)=f(2)+3f(1)f(2)=2f(1)x=0,f(0)=f(1)+3f(2)=f(1)6f(1)f(0)=5f(1)x=2,f(2)=f(3)+3f(8)=18+3f(0)2f(1)=1815f(1)f(1)=1813
Commented by mnjuly1970 last updated on 03/Jul/22
thanks alot
thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *