Question Number 173042 by mathlove last updated on 05/Jul/22
Answered by Rasheed.Sindhi last updated on 05/Jul/22
$$\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{2}=\mathrm{3} \\ $$$${x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} ={y}:\:{y}^{\mathrm{2}} −{y}+\mathrm{1}=\mathrm{0} \\ $$$$\left({y}+\mathrm{1}\right)\left({y}^{\mathrm{2}} −{y}+\mathrm{1}\right)=\mathrm{0} \\ $$$${y}^{\mathrm{3}} +\mathrm{1}=\mathrm{0}\Rightarrow\left({x}^{\mathrm{2}} \right)^{\mathrm{3}} +\mathrm{1}=\mathrm{0} \\ $$$$\begin{array}{|c|}{{x}^{\mathrm{6}} +\mathrm{1}=\mathrm{0}}\\\hline\end{array} \\ $$$$\:\:\:\: \\ $$$${x}^{\mathrm{206}} +{x}^{\mathrm{200}} +{x}^{\mathrm{90}} +{x}^{\mathrm{84}} +{x}^{\mathrm{18}} +{x}^{\mathrm{12}} +{x}^{\mathrm{6}} +\mathrm{1} \\ $$$$={x}^{\mathrm{200}} \left({x}^{\mathrm{6}} +\mathrm{1}\right)+{x}^{\mathrm{84}} \left({x}^{\mathrm{6}} +\mathrm{1}\right)+{x}^{\mathrm{12}} \left({x}^{\mathrm{6}} +\mathrm{1}\right)+\left({x}^{\mathrm{6}} +\mathrm{1}\right) \\ $$$$=\left({x}^{\mathrm{6}} +\mathrm{1}\right)\left({x}^{\mathrm{200}} +{x}^{\mathrm{84}} +{x}^{\mathrm{12}} +\mathrm{1}\right) \\ $$$$=\left(\mathrm{0}\right)\left({x}^{\mathrm{200}} +{x}^{\mathrm{84}} +{x}^{\mathrm{12}} +\mathrm{1}\right) \\ $$$$=\mathrm{0} \\ $$
Commented by mathlove last updated on 06/Jul/22
$${thanks}\:{sir} \\ $$
Answered by Rasheed.Sindhi last updated on 05/Jul/22
$$\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} =\mathrm{3} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{3} \\ $$$${x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{4}} ={x}^{\mathrm{2}} −\mathrm{1} \\ $$$${x}^{\mathrm{6}} ={x}^{\mathrm{4}} −{x}^{\mathrm{2}} ={x}^{\mathrm{2}} −\mathrm{1}−{x}^{\mathrm{2}} =−\mathrm{1} \\ $$$$ \\ $$$${x}^{\mathrm{206}} +{x}^{\mathrm{200}} +{x}^{\mathrm{90}} +{x}^{\mathrm{84}} +{x}^{\mathrm{18}} +{x}^{\mathrm{12}} +{x}^{\mathrm{6}} +\mathrm{1} \\ $$$$=\left({x}^{\mathrm{6}} \right)^{\mathrm{34}} {x}^{\mathrm{2}} +\left({x}^{\mathrm{6}} \right)^{\mathrm{33}} {x}^{\mathrm{2}} +\left({x}^{\mathrm{6}} \right)^{\mathrm{15}} +\left({x}^{\mathrm{6}} \right)^{\mathrm{14}} +\left({x}^{\mathrm{6}} \right)^{\mathrm{3}} +\left({x}^{\mathrm{6}} \right)^{\mathrm{2}} +\left(−\mathrm{1}\right)+\mathrm{1} \\ $$$$=\left(−\mathrm{1}\right)^{\mathrm{34}} {x}^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{33}} {x}^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{15}} +\left(−\mathrm{1}\right)^{\mathrm{14}} +\left(−\mathrm{1}\right)^{\mathrm{3}} +\left(−\mathrm{1}\right)^{\mathrm{2}} +\left(−\mathrm{1}\right)+\mathrm{1} \\ $$$$=\cancel{{x}^{\mathrm{2}} }−\cancel{{x}^{\mathrm{2}} }−\cancel{\mathrm{1}}+\cancel{\mathrm{1}}−\cancel{\mathrm{1}}+\cancel{\mathrm{1}}−\cancel{\mathrm{1}}+\cancel{\mathrm{1}}=\mathrm{0} \\ $$