Menu Close

Question-173049




Question Number 173049 by Shrinava last updated on 05/Jul/22
Answered by MJS_new last updated on 06/Jul/22
let x≤y≤z≤t ⇒ x=y=0∧z=t=723
$$\mathrm{let}\:{x}\leqslant{y}\leqslant{z}\leqslant{t}\:\Rightarrow\:{x}={y}=\mathrm{0}\wedge{z}={t}=\mathrm{723} \\ $$
Answered by dragan91 last updated on 06/Jul/22
Let x≤y≤z≤t and  x=y and z=t  2x+2z=1446   x+z=723  x!x!z!=z!  (x!)^2 =1⇒ x=y=1  then t=z=722  (x,y,z,t)=(1,1,722,722)  for x≠y≠z≠t and x=1  Notice 6!=720 let  y=6  1!6!z!=t!  720∙719!=720!⇒z=719,t=720  check  1+6+719+720=1446✓  1!6!719!=720!  (x,y,z,t)=(1,6,719,720)  ALL SOLUTIONS  (x,y,z,t)=(1,1,722,722)  (x,y,z,t)=(1,6,719,720)
$${Let}\:{x}\leqslant{y}\leqslant{z}\leqslant{t}\:{and} \\ $$$${x}={y}\:{and}\:{z}={t} \\ $$$$\mathrm{2}{x}+\mathrm{2}{z}=\mathrm{1446} \\ $$$$\:{x}+{z}=\mathrm{723} \\ $$$${x}!{x}!{z}!={z}! \\ $$$$\left({x}!\right)^{\mathrm{2}} =\mathrm{1}\Rightarrow\:{x}={y}=\mathrm{1} \\ $$$${then}\:{t}={z}=\mathrm{722} \\ $$$$\underline{\left({x},{y},{z},{t}\right)=\left(\mathrm{1},\mathrm{1},\mathrm{722},\mathrm{722}\right)} \\ $$$${for}\:{x}\neq{y}\neq{z}\neq{t}\:{and}\:{x}=\mathrm{1} \\ $$$${Notice}\:\mathrm{6}!=\mathrm{720}\:{let}\:\:{y}=\mathrm{6} \\ $$$$\mathrm{1}!\mathrm{6}!{z}!={t}! \\ $$$$\mathrm{720}\centerdot\mathrm{719}!=\mathrm{720}!\Rightarrow{z}=\mathrm{719},{t}=\mathrm{720} \\ $$$${check} \\ $$$$\mathrm{1}+\mathrm{6}+\mathrm{719}+\mathrm{720}=\mathrm{1446}\checkmark \\ $$$$\mathrm{1}!\mathrm{6}!\mathrm{719}!=\mathrm{720}! \\ $$$$\left({x},{y},{z},{t}\right)=\left(\mathrm{1},\mathrm{6},\mathrm{719},\mathrm{720}\right) \\ $$$${ALL}\:{SOLUTIONS} \\ $$$$\left({x},{y},{z},{t}\right)=\left(\mathrm{1},\mathrm{1},\mathrm{722},\mathrm{722}\right) \\ $$$$\left({x},{y},{z},{t}\right)=\left(\mathrm{1},\mathrm{6},\mathrm{719},\mathrm{720}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by MJS_new last updated on 06/Jul/22
with this you were faster than me. thanks  now I don′t have to type it!
$$\mathrm{with}\:\mathrm{this}\:\mathrm{you}\:\mathrm{were}\:\mathrm{faster}\:\mathrm{than}\:\mathrm{me}.\:\mathrm{thanks} \\ $$$$\mathrm{now}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{to}\:\mathrm{type}\:\mathrm{it}! \\ $$
Commented by dragan91 last updated on 06/Jul/22
Yes.U are right. Thanks
$$\mathrm{Yes}.\mathrm{U}\:\mathrm{are}\:\mathrm{right}.\:\mathrm{Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *