Menu Close

Question-173162




Question Number 173162 by dragan91 last updated on 07/Jul/22
Answered by aleks041103 last updated on 07/Jul/22
x+y>0  ⇒x^z >y^z   z∈N⇒x>y  let x=y+t, t∈N  (y+t)^z −y^z =2y+t  z=1⇒(y+t)−y=t=2y+t⇒y=0∉N  ⇒z>1  (y+t)^z −y^z =y^z ((1+(t/y))^z −1^z )=  =y^z (t/y)(1+(1+(t/y))+(1+(t/y))^2 +...+(1+(t/y))^(z−1) )=  =ty^(z−1) (1+(1+(t/y))+(1+(t/y))^2 +...+(1+(t/y))^(z−1) )  ⇒(y+t)^z −y^z >ty^(z−1) (2+(t/y))=2ty^(z−1) +t^2 y^(z−2)   z≥2⇒y^(z−2) ≥1, y^(z−1) ≥y  ⇒x^z −y^z ≥2ty+t^2 =t(2y+t)=t(x+y)  ⇒((x^z −y^z )/(x+y))≥t  if  ∃x,y,z∈N, s.t. x^z −y^z =x+y, then  1≥t∈N⇒t=1  ⇒x=y+1
x+y>0xz>yzzNx>yletx=y+t,tN(y+t)zyz=2y+tz=1(y+t)y=t=2y+ty=0Nz>1(y+t)zyz=yz((1+ty)z1z)==yzty(1+(1+ty)+(1+ty)2++(1+ty)z1)==tyz1(1+(1+ty)+(1+ty)2++(1+ty)z1)(y+t)zyz>tyz1(2+ty)=2tyz1+t2yz2z2yz21,yz1yxzyz2ty+t2=t(2y+t)=t(x+y)xzyzx+ytifx,y,zN,s.t.xzyz=x+y,then1tNt=1x=y+1
Commented by dragan91 last updated on 08/Jul/22
well done sir
welldonesir
Commented by Tawa11 last updated on 11/Jul/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *