Menu Close

Question-173303




Question Number 173303 by dragan91 last updated on 09/Jul/22
Answered by Frix last updated on 09/Jul/22
5a^6 +15a^4 +1≥16a^5 +5a^2   ⇔  5a^6 −16a^5 +15a^4 −5a^2 +1≥0  ⇔  (a−1)^4 (5a^2 +4a+1)≥0  (a−1)^4 ≥0∧(5a^2 +4a+1)≥(1/5)>0  A≥0∧B>0 ⇒ AB≥0  proven.
$$\mathrm{5}{a}^{\mathrm{6}} +\mathrm{15}{a}^{\mathrm{4}} +\mathrm{1}\geqslant\mathrm{16}{a}^{\mathrm{5}} +\mathrm{5}{a}^{\mathrm{2}} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{5}{a}^{\mathrm{6}} −\mathrm{16}{a}^{\mathrm{5}} +\mathrm{15}{a}^{\mathrm{4}} −\mathrm{5}{a}^{\mathrm{2}} +\mathrm{1}\geqslant\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$$\left({a}−\mathrm{1}\right)^{\mathrm{4}} \left(\mathrm{5}{a}^{\mathrm{2}} +\mathrm{4}{a}+\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$$\left({a}−\mathrm{1}\right)^{\mathrm{4}} \geqslant\mathrm{0}\wedge\left(\mathrm{5}{a}^{\mathrm{2}} +\mathrm{4}{a}+\mathrm{1}\right)\geqslant\frac{\mathrm{1}}{\mathrm{5}}>\mathrm{0} \\ $$$${A}\geqslant\mathrm{0}\wedge{B}>\mathrm{0}\:\Rightarrow\:{AB}\geqslant\mathrm{0} \\ $$$$\mathrm{proven}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *