Menu Close

Question-173369




Question Number 173369 by AgniMath last updated on 10/Jul/22
Answered by mr W last updated on 10/Jul/22
((by+cz)/(b^2 +c^2 ))=((cz+ax)/(c^2 +a^2 ))=((ax+by)/(a^2 +b^2 ))=k, say  ax+by=k(a^2 +b^2 )    ...(i)  by+cz=k(b^2 +c^2 )     ...(ii)  cz+ax=k(c^2 +a^2 )   ...(iii)  Σ:  ax+by+cz=k(a^2 +b^2 +c^2 )   ...(iv)  (iv)−(ii):  ⇒ax=ka^2  ⇒(x/a)=k  similarly  ⇒(y/b)=k, (z/c)=k  ⇒(a/x)=(b/b)=(c/z)=k
$$\frac{{by}+{cz}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }=\frac{{cz}+{ax}}{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} }=\frac{{ax}+{by}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }={k},\:{say} \\ $$$${ax}+{by}={k}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\:\:\:\:…\left({i}\right) \\ $$$${by}+{cz}={k}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\:\:\:\:\:…\left({ii}\right) \\ $$$${cz}+{ax}={k}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\:\:\:…\left({iii}\right) \\ $$$$\Sigma: \\ $$$${ax}+{by}+{cz}={k}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\:\:\:…\left({iv}\right) \\ $$$$\left({iv}\right)−\left({ii}\right): \\ $$$$\Rightarrow{ax}={ka}^{\mathrm{2}} \:\Rightarrow\frac{{x}}{{a}}={k} \\ $$$${similarly} \\ $$$$\Rightarrow\frac{{y}}{{b}}={k},\:\frac{{z}}{{c}}={k} \\ $$$$\Rightarrow\frac{{a}}{{x}}=\frac{{b}}{{b}}=\frac{{c}}{{z}}={k} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *