Menu Close

Question-173386




Question Number 173386 by mathlove last updated on 10/Jul/22
Answered by mnjuly1970 last updated on 10/Jul/22
   lim_( n→∞)  (( (n+1)!−1)/((n+1)!)) =1−lim_( n→∞) ((1/((n+1)!)))        = 1
$$\:\:\:\mathrm{lim}_{\:\mathrm{n}\rightarrow\infty} \:\frac{\:\left(\mathrm{n}+\mathrm{1}\right)!−\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}\:=\mathrm{1}−\mathrm{lim}_{\:\mathrm{n}\rightarrow\infty} \left(\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}\right) \\ $$$$\:\:\:\:\:\:=\:\mathrm{1} \\ $$
Commented by mr W last updated on 11/Jul/22
that you don′t understand it doesn′t  mean that it is wrong!  1×1!=(2−1)×1!=2!−1!  2×2!=3!−2!  3×3!=4!−3!  ...  n×n!=(n+1)!−n!  Σ=(n+1)!−1!  (Σ/((n+1)!))=(((n+1)!−1)/((n+1)!))=1−(1/((n+1)!))  lim_(n→∞) (Σ/((n+1)!))=lim_(n→∞) (1−(1/((n+1)!)))=1−0=1  so it is very correct!
$${that}\:{you}\:{don}'{t}\:{understand}\:{it}\:{doesn}'{t} \\ $$$${mean}\:{that}\:{it}\:{is}\:{wrong}! \\ $$$$\mathrm{1}×\mathrm{1}!=\left(\mathrm{2}−\mathrm{1}\right)×\mathrm{1}!=\mathrm{2}!−\mathrm{1}! \\ $$$$\mathrm{2}×\mathrm{2}!=\mathrm{3}!−\mathrm{2}! \\ $$$$\mathrm{3}×\mathrm{3}!=\mathrm{4}!−\mathrm{3}! \\ $$$$… \\ $$$${n}×{n}!=\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$\Sigma=\left({n}+\mathrm{1}\right)!−\mathrm{1}! \\ $$$$\frac{\Sigma}{\left({n}+\mathrm{1}\right)!}=\frac{\left({n}+\mathrm{1}\right)!−\mathrm{1}}{\left({n}+\mathrm{1}\right)!}=\mathrm{1}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\Sigma}{\left({n}+\mathrm{1}\right)!}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}\right)=\mathrm{1}−\mathrm{0}=\mathrm{1} \\ $$$${so}\:{it}\:{is}\:{very}\:{correct}! \\ $$
Commented by mathlove last updated on 11/Jul/22
thanks mr W
$${thanks}\:{mr}\:{W} \\ $$
Commented by mnjuly1970 last updated on 11/Jul/22
    thx so much  Sir  W...
$$\:\:\:\:\mathrm{thx}\:\mathrm{so}\:\mathrm{much}\:\:\mathrm{Sir}\:\:\mathrm{W}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *