Question Number 173403 by mathlove last updated on 11/Jul/22
Commented by mr W last updated on 11/Jul/22
$$\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }\:\mathrm{sin}\:\left({n}!\right)}{{n}+\mathrm{1}}\geqslant−\frac{{n}^{\frac{\mathrm{2}}{\mathrm{3}}} }{{n}+\mathrm{1}}>−\frac{{n}^{\frac{\mathrm{2}}{\mathrm{3}}} }{{n}}=−\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{n}}} \\ $$$$\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }\:\mathrm{sin}\:\left({n}!\right)}{{n}+\mathrm{1}}\leqslant\frac{{n}^{\frac{\mathrm{2}}{\mathrm{3}}} }{{n}+\mathrm{1}}<\frac{{n}^{\frac{\mathrm{2}}{\mathrm{3}}} }{{n}}=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{n}}} \\ $$$$−\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{n}}}<\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }\:\mathrm{sin}\:\left({n}!\right)}{{n}+\mathrm{1}}<\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{n}}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(−\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{n}}}\right)<\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }\:\mathrm{sin}\:\left({n}!\right)}{{n}+\mathrm{1}}<\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{n}}} \\ $$$$\mathrm{0}<\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }\:\mathrm{sin}\:\left({n}!\right)}{{n}+\mathrm{1}}<\mathrm{0} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }\:\mathrm{sin}\:\left({n}!\right)}{{n}+\mathrm{1}}=\mathrm{0}\:\checkmark \\ $$
Commented by mathlove last updated on 11/Jul/22
$$ \\ $$Thank you so much for a long life. I don't have words to thank you for always helping me
Commented by kaivan.ahmadi last updated on 11/Jul/22
$$−\mathrm{1}\leqslant{sin}\left({n}!\right)\leqslant\mathrm{1}\Rightarrow \\ $$$$−\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }}{{n}+\mathrm{1}}\leqslant\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }{sin}\left({n}!\right)}{{n}+\mathrm{1}}\leqslant\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }}{{n}+\mathrm{1}}\Rightarrow \\ $$$${lim}_{{n}\rightarrow\infty} −\frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }}{{n}+\mathrm{1}}\leqslant{lim}_{{n}\rightarrow\infty} \frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }{sin}\left({n}!\right)}{{n}+\mathrm{1}}\leqslant{lim}_{{n}\rightarrow\infty} \frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }}{{n}+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{0}\leqslant{lim}_{{n}\rightarrow\infty} \frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }{sin}\left({n}\right)}{{n}+\mathrm{1}}\leqslant\mathrm{0} \\ $$$$\Rightarrow{lim}_{{n}\rightarrow\infty} \frac{\sqrt[{\mathrm{3}}]{{n}^{\mathrm{2}} }{sin}\left({n}!\right)}{{n}+\mathrm{1}}=\mathrm{0} \\ $$
Commented by mathlove last updated on 13/Jul/22
$${thanks} \\ $$