Menu Close

Question-173408




Question Number 173408 by mr W last updated on 11/Jul/22
Commented by mr W last updated on 11/Jul/22
the areas of three parts of a regular  hexagon are given. find the areas of  the other parts.
$${the}\:{areas}\:{of}\:{three}\:{parts}\:{of}\:{a}\:{regular} \\ $$$${hexagon}\:{are}\:{given}.\:{find}\:{the}\:{areas}\:{of} \\ $$$${the}\:{other}\:{parts}. \\ $$
Answered by aleks041103 last updated on 11/Jul/22
if we extend the sides we can form 2  equlateral triangles. In those, the sum  of the distances from any point inside  to the sides is constant independent of  the chosen point.  ⇒S_(hex) =2(3+4+5)=2.12=24  The sum of the distances from a point  to two opposite sides is constant.  ⇒3+x=4+y=5+z=S/3=8  ⇒x=5,y=4,z=3
$${if}\:{we}\:{extend}\:{the}\:{sides}\:{we}\:{can}\:{form}\:\mathrm{2} \\ $$$${equlateral}\:{triangles}.\:{In}\:{those},\:{the}\:{sum} \\ $$$${of}\:{the}\:{distances}\:{from}\:{any}\:{point}\:{inside} \\ $$$${to}\:{the}\:{sides}\:{is}\:{constant}\:{independent}\:{of} \\ $$$${the}\:{chosen}\:{point}. \\ $$$$\Rightarrow{S}_{{hex}} =\mathrm{2}\left(\mathrm{3}+\mathrm{4}+\mathrm{5}\right)=\mathrm{2}.\mathrm{12}=\mathrm{24} \\ $$$${The}\:{sum}\:{of}\:{the}\:{distances}\:{from}\:{a}\:{point} \\ $$$${to}\:{two}\:{opposite}\:{sides}\:{is}\:{constant}. \\ $$$$\Rightarrow\mathrm{3}+{x}=\mathrm{4}+{y}=\mathrm{5}+{z}={S}/\mathrm{3}=\mathrm{8} \\ $$$$\Rightarrow{x}=\mathrm{5},{y}=\mathrm{4},{z}=\mathrm{3} \\ $$
Commented by aleks041103 last updated on 11/Jul/22
Commented by mr W last updated on 11/Jul/22
great! thanks sir!
$${great}!\:{thanks}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *