Menu Close

Question-173420




Question Number 173420 by AgniMath last updated on 11/Jul/22
Answered by Rasheed.Sindhi last updated on 11/Jul/22
x+y+z=0;  (1/(x^2 +y^2 −z^2 ))+(1/(y^2 +z^2 −x^2 ))+(1/(z^2 +x^2 −y^2 ))  =(1/(x^2 +(y−z)(y+z)_(=−x) ))+(1/(y^2 +(z−x)(z+x)_(=−y) ))+(1/(z^2 +(x−y)(x+y)_(=−z) ))  =(1/(x^2 −x(y−z)))+(1/(y^2 −y(z−x)))+(1/(z^2 −z(x−y)))  =(1/(x(x−y+z)))+(1/(y(y−z+x)))+(1/(z(z−x+y)))  =(1/(x(−y−y)))+(1/(y(−z−z)))+(1/(z(−x−x)))  =−((1/(2xy))+(1/(2yz))+(1/(2zx)))  =−((z+x+y)/(2xyz))=−(0/(2xyz))=0
$${x}+{y}+{z}=\mathrm{0}; \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{z}^{\mathrm{2}} }+\frac{\mathrm{1}}{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} −{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{z}^{\mathrm{2}} +{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\left({y}−{z}\right)\underset{=−{x}} {\underbrace{\left({y}+{z}\right)}}}+\frac{\mathrm{1}}{{y}^{\mathrm{2}} +\left({z}−{x}\right)\underset{=−{y}} {\underbrace{\left({z}+{x}\right)}}}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\left({x}−{y}\right)\underset{=−{z}} {\underbrace{\left({x}+{y}\right)}}} \\ $$$$=\frac{\mathrm{1}}{{x}^{\mathrm{2}} −{x}\left({y}−{z}\right)}+\frac{\mathrm{1}}{{y}^{\mathrm{2}} −{y}\left({z}−{x}\right)}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} −{z}\left({x}−{y}\right)} \\ $$$$=\frac{\mathrm{1}}{{x}\left({x}−{y}+{z}\right)}+\frac{\mathrm{1}}{{y}\left({y}−{z}+{x}\right)}+\frac{\mathrm{1}}{{z}\left({z}−{x}+{y}\right)} \\ $$$$=\frac{\mathrm{1}}{{x}\left(−{y}−{y}\right)}+\frac{\mathrm{1}}{{y}\left(−{z}−{z}\right)}+\frac{\mathrm{1}}{{z}\left(−{x}−{x}\right)} \\ $$$$=−\left(\frac{\mathrm{1}}{\mathrm{2}{xy}}+\frac{\mathrm{1}}{\mathrm{2}{yz}}+\frac{\mathrm{1}}{\mathrm{2}{zx}}\right) \\ $$$$=−\frac{{z}+{x}+{y}}{\mathrm{2}{xyz}}=−\frac{\mathrm{0}}{\mathrm{2}{xyz}}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *