Menu Close

Question-173431




Question Number 173431 by mnjuly1970 last updated on 11/Jul/22
Commented by Rasheed.Sindhi last updated on 11/Jul/22
(a,b)=(10,13),(13,10);  n=3197=23×139
(a,b)=(10,13),(13,10);n=3197=23×139
Commented by mr W last updated on 11/Jul/22
very right sir!
veryrightsir!
Answered by mr W last updated on 11/Jul/22
n=a^3 +b^3 =(a+b)[(a+b)^2 −3ab]=A×B  A=a+b=23  B=(a+b)^2 −3ab=23^2 −3ab  n_(min) ⇒B_(min) ⇒(ab)_(max)   (ab)≤(((a+b)/2))^2 =(((23)/2))^2   for a,b ∈R, (ab)_(max)  is when a=b=((23)/2).  for a,b∈N, (ab)_(max)  is when a and b   are at most equal to each other, besides  B=23^2 −3ab should have no prime   factor less than 23.   we start with the best a=11, b=12:   B=23^2 −3×11×12=133=7×19 ⇒bad!  now we try the next best a=10, b=13:  B=23^2 −3×10×13=139=prime ⇒ok!  bingo! this is a direct hit!  ⇒n_(min) =23×139=3197    similary for n_(max) :  we start with a=1, b=22:  B=23^2 −3×1×22=463=prime⇒ok!  ⇒n_(max) =23×463=10649
n=a3+b3=(a+b)[(a+b)23ab]=A×BA=a+b=23B=(a+b)23ab=2323abnminBmin(ab)max(ab)(a+b2)2=(232)2fora,bR,(ab)maxiswhena=b=232.fora,bN,(ab)maxiswhenaandbareatmostequaltoeachother,besidesB=2323abshouldhavenoprimefactorlessthan23.westartwiththebesta=11,b=12:B=2323×11×12=133=7×19bad!nowwetrythenextbesta=10,b=13:B=2323×10×13=139=primeok!bingo!thisisadirecthit!nmin=23×139=3197similaryfornmax:westartwitha=1,b=22:B=2323×1×22=463=primeok!nmax=23×463=10649
Commented by mnjuly1970 last updated on 12/Jul/22
very nice solution  sir W...grateful...thanks alot..
verynicesolutionsirWgratefulthanksalot..
Commented by Rasheed.Sindhi last updated on 12/Jul/22
Great sir!
Greatsir!
Commented by Tawa11 last updated on 13/Jul/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *