Question Number 173566 by Khalmohmmad last updated on 13/Jul/22
Answered by MJS_new last updated on 13/Jul/22
$${x}=\mathrm{0}\vee{x}=−\infty \\ $$
Answered by mr W last updated on 13/Jul/22
$${obvious}:\:{x}=\mathrm{0} \\ $$$${or}\:{using}\:{Lambert}\:{W}−{function}: \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{x}} =\mathrm{1}−\frac{{x}}{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{9}}{\mathrm{4}}\right)\left(\frac{\mathrm{9}}{\mathrm{4}}\right)^{\frac{{x}}{\mathrm{2}}−\mathrm{1}} =\mathrm{1}−\frac{{x}}{\mathrm{2}} \\ $$$$\frac{\mathrm{9}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}=\left[\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}\right]{e}^{\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}} \\ $$$${W}\left(\frac{\mathrm{9}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}\right)=\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}} \\ $$$${x}=\mathrm{2}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}}{W}\left(\frac{\mathrm{9}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}\right)\right] \\ $$$$\Rightarrow{x}=\mathrm{2}−\frac{{W}\left(\frac{\mathrm{9}}{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{ln}\:\frac{\mathrm{3}}{\mathrm{2}}}=\mathrm{0} \\ $$
Commented by Tawa11 last updated on 13/Jul/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by a.lgnaoui last updated on 14/Jul/22
$$\mathrm{2}^{\mathrm{x}} −\mathrm{3}^{\mathrm{x}} =\frac{\mathrm{x}}{\mathrm{2}}\mathrm{2}^{\mathrm{x}} \\ $$$$\left(\mathrm{2}^{\mathrm{x}} −\mathrm{3}^{\mathrm{x}} \right)^{\mathrm{2}} =\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}}\mathrm{2}^{\mathrm{2x}\:} \:\:\Rightarrow\mathrm{2}^{\mathrm{2}{x}} +\mathrm{3}^{\mathrm{2}{x}} −\mathrm{2}×\mathrm{2}^{{x}} ×\mathrm{3}^{{x}} =\left(\frac{{x}}{\mathrm{2}}\mathrm{2}^{{x}} \right)^{\mathrm{2}} \\ $$$$\left(\mathrm{2}^{{x}} −\mathrm{3}^{{x}} \right)^{\mathrm{2}} −\left(\frac{{x}}{\mathrm{2}}\mathrm{2}^{{x}} \right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow \\ $$$$\left[\mathrm{2}^{{x}} −\mathrm{3}^{{x}} −\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}\right]\left[\mathrm{2}^{{x}} −\mathrm{3}^{{x}} +\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}\right]=\mathrm{0} \\ $$$$\:\:\mathrm{2}^{{x}} −\mathrm{3}^{{x}} =\pm\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}\: \\ $$$$\mathrm{3}^{{x}} =\mathrm{2}^{{x}} \left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{3}^{{x}} =\mathrm{2}^{{x}} \left(\mathrm{1}+\frac{{x}}{\mathrm{2}}\right)\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)/\left(\mathrm{2}\right)\Rightarrow\:\:\:\mathrm{1}=\frac{\mathrm{1}−\frac{{x}}{\mathrm{2}}}{\mathrm{1}+\frac{{x}}{\mathrm{2}}}\:\:\:\Rightarrow{x}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by a.lgnaoui last updated on 14/Jul/22
$${think}\:{Sir}. \\ $$
Commented by mr W last updated on 14/Jul/22
$${i}\:{don}'{t}\:{think}\:{this}\:{method}\:{is}\:{correct}\:{sir}. \\ $$$${the}\:{original}\:{eqn}.\:{is}\:{just} \\ $$$$\mathrm{2}^{{x}} −\mathrm{3}^{{x}} =\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}. \\ $$$${but}\:{through}\:{squaring}\:{you}\:{changed}\:{it}\:{to} \\ $$$${two}\:{equations}: \\ $$$$\:\:\mathrm{2}^{{x}} −\mathrm{3}^{{x}} =\pm\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}. \\ $$$${and}\:{then}\:{you}\:{treat}\:{these}\:{two}\:{equations}\: \\ $$$${as}\:{an}\:{equation}\:{system}\:{and} \\ $$$${divide}\:{eqn}.\mathrm{1}\:{with}\:{eqn}.\:\mathrm{2}.\: \\ $$$${basically}\:{you}\:{did}\:{something}\:{like}\:{following}: \\ $$$${question}\:{is}\:{to}\:{solve}\:{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{2}=\mathrm{0} \\ $$$$ \\ $$$${x}^{\mathrm{3}} −\mathrm{2}{x}={x}+\mathrm{2} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{2}{x}\right)^{\mathrm{2}} =\left({x}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{2}{x}\right)^{\mathrm{2}} −\left({x}+\mathrm{2}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{2}{x}−{x}−\mathrm{2}\right)\left({x}^{\mathrm{3}} −\mathrm{2}{x}+{x}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\begin{cases}{{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{2}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{3}} −{x}=\mathrm{2}{x}+\mathrm{2}\:\:\:\:…\left({i}\right)}\\{{x}^{\mathrm{3}} −{x}+\mathrm{2}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{3}} −{x}=−\mathrm{2}\:\:\:…\left({ii}\right)}\end{cases} \\ $$$$\left({i}\right)/\left({ii}\right): \\ $$$$\frac{{x}^{\mathrm{3}} −{x}}{{x}^{\mathrm{3}} −{x}}=\frac{\mathrm{2}{x}+\mathrm{2}}{−\mathrm{2}}=\mathrm{1} \\ $$$$\mathrm{2}{x}+\mathrm{2}=−\mathrm{2} \\ $$$$\Rightarrow{x}=−\mathrm{2} \\ $$$${this}\:{solution}\:{is}\:{certainly}\:{wrong}. \\ $$
Commented by mr W last updated on 14/Jul/22
$${you}\:{are}\:{welcome}! \\ $$