Menu Close

Question-173629




Question Number 173629 by mnjuly1970 last updated on 15/Jul/22
Commented by mnjuly1970 last updated on 15/Jul/22
    solve  for   R   a,b,c ? ⇑⇑⇑
solveforRa,b,c?⇑⇑⇑
Commented by Tawa11 last updated on 15/Jul/22
Great sirs
Greatsirs
Answered by mahdipoor last updated on 15/Jul/22
a^3 +b^3 =(a+b)(a^2 +b^2 −ab)=  a+b+(c)=a+b+(a+b)=2(a+b)  i⇒a+b=0 ⇒ a=k , b=−k , c=0  (a^2 +b^2 =b+c) ⇒ 2k^2 =−k ⇒ k=0 or −(1/2)  ⇒⇒ ((a),(b),(c) ) = ((0),(0),(0) )  or  (((−0.5)),((0.5)),(0) )  ii⇒a+b≠0 ⇒ 2=(a^2 +b^2 )−ab=b+(c)−ab  =2b+a−ab ⇒2b+a−ab−2=0 ⇒  (a−2)(1−b)=0 ⇒  1)if a=2 ⇒ c=2+b & 4+b^2 =b+c ⇒  4+b^2 =2b+2⇒b^2 −2b+2=0 ⇒ ∄b∈R  2)if b=1 ⇒ c=1+a & 1+a^2 =1+c ⇒  1+a^2 =2+a⇒a^2 −a−1=0 ⇒a=((1±(√5))/2)  ⇒⇒ ((a),(b),(c) ) = ((((1±(√5))/2)),(1),(((3±(√5))/2)) )
a3+b3=(a+b)(a2+b2ab)=a+b+(c)=a+b+(a+b)=2(a+b)ia+b=0a=k,b=k,c=0(a2+b2=b+c)2k2=kk=0or12⇒⇒(abc)=(000)or(0.50.50)iia+b02=(a2+b2)ab=b+(c)ab=2b+aab2b+aab2=0(a2)(1b)=01)ifa=2c=2+b&4+b2=b+c4+b2=2b+2b22b+2=0bR2)ifb=1c=1+a&1+a2=1+c1+a2=2+aa2a1=0a=1±52⇒⇒(abc)=(1±5213±52)
Answered by MJS_new last updated on 15/Jul/22
obviously a=b=c=0  c=a+b  b=pa   { (((p^2 +1)a^2 −(2p+1)a=0)),(((p^3 +1)a^3 −2(p+1)a=0)) :}  a≠0   { (((p^2 +1)a−2p−1=0)),(((p+1)((p^2 −p+1)a^2 −2)=0)) :}  p_1 =−1 ⇒ a_1 =−(1/2)∧b_1 =(1/2)∧c_1 =0  a=((2p+1)/(p^2 +1))  p^4 −(3/2)p^2 +(3/2)p−(1/2)=0  (p^2 +p−1)(p^2 −p+(1/2))=0  p_2 =−(1/2)−((√5)/2) ⇒ a_2 =(1/2)−((√5)/2)∧b_2 =1∧c_2 =(3/2)−((√5)/2)  p_3 =−(1/2)+((√5)/2) ⇒ a_3 =(1/2)+((√5)/2)∧b_3 =1∧c_3 =(3/2)+((√5)/2)  (p_(4, 5) =(1/2)±(1/2)i)
obviouslya=b=c=0c=a+bb=pa{(p2+1)a2(2p+1)a=0(p3+1)a32(p+1)a=0a0{(p2+1)a2p1=0(p+1)((p2p+1)a22)=0p1=1a1=12b1=12c1=0a=2p+1p2+1p432p2+32p12=0(p2+p1)(p2p+12)=0p2=1252a2=1252b2=1c2=3252p3=12+52a3=12+52b3=1c3=32+52(p4,5=12±12i)

Leave a Reply

Your email address will not be published. Required fields are marked *