Question Number 173765 by saly last updated on 17/Jul/22
Answered by cortano1 last updated on 18/Jul/22
$$\:{L}\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{3}}{\mathrm{1}−\sqrt{{x}}}\:−\:\frac{\mathrm{2}}{\mathrm{1}−\sqrt[{\mathrm{3}}]{{x}}}\:\right)=? \\ $$$$\:\left[\:{let}\:{x}\:=\:{t}^{\mathrm{6}} \:\wedge\:{t}\rightarrow\mathrm{1}\:\right] \\ $$$$\:{L}=\:\underset{{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{3}}{\mathrm{1}−{t}^{\mathrm{3}} }\:−\:\frac{\mathrm{2}}{\mathrm{1}−{t}^{\mathrm{2}} }\:\right) \\ $$$$\:\:\:\:\:\:=\:\underset{{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{\mathrm{3}}{\left(\mathrm{1}−{t}\right)\left(\mathrm{1}+{t}+{t}^{\mathrm{2}} \right)}\:−\frac{\mathrm{2}}{\left(\mathrm{1}−{t}\right)\left(\mathrm{1}+{t}\right)}\right) \\ $$$$\:\:\:\:\:=\:\underset{{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{\mathrm{3}{t}+\mathrm{3}−\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{2}}{\left(\mathrm{1}−{t}\right)\left(\mathrm{1}+{t}\right)\left(\mathrm{1}+{t}+{t}^{\mathrm{2}} \right)}\right) \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{6}}×\underset{{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{−\left({t}−\mathrm{1}\right)\left(\mathrm{2}{t}+\mathrm{1}\right)}{−\left({t}−\mathrm{1}\right)}\right) \\ $$$$\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{6}}×\mathrm{3}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by saly last updated on 18/Jul/22
$${Thank}\:{you} \\ $$
Answered by blackmamba last updated on 18/Jul/22
$$\:{set}\:{x}−\mathrm{1}\:={r}\:\wedge\:{r}\rightarrow\mathrm{0} \\ $$$$\:=\:\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{3}}{\mathrm{1}−\sqrt{\mathrm{1}+{r}}}\:−\frac{\mathrm{2}}{\mathrm{1}−\sqrt[{\mathrm{3}}]{\mathrm{1}+{r}}}\right) \\ $$$$\:=\:\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{3}\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{\mathrm{1}+{r}}\right)−\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{1}+{r}}\right)}{\left(\mathrm{1}−\sqrt{\mathrm{1}+{r}}\right)\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{\mathrm{1}+{r}}\right)}\right) \\ $$$$\:\:=\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{3}\left(\mathrm{1}−\left(\mathrm{1}+\frac{{r}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{9}}{r}^{\mathrm{2}} \right)\right)−\mathrm{2}\left(\mathrm{1}−\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{r}−\frac{\mathrm{1}}{\mathrm{8}}{r}^{\mathrm{2}} \right)\right)}{\left(\mathrm{1}−\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{r}\right)\right)\left(\mathrm{1}−\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}{r}\right)\right)}\right. \\ $$$$\:=\:\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{3}\left(−\frac{{r}}{\mathrm{3}}+\frac{{r}^{\mathrm{2}} }{\mathrm{9}}\right)−\mathrm{2}\left(−\frac{{r}}{\mathrm{2}}+\frac{{r}^{\mathrm{2}} }{\mathrm{8}}\right)}{\left(−\frac{\mathrm{1}}{\mathrm{2}}{r}\right)\left(−\frac{\mathrm{1}}{\mathrm{3}}{r}\right)}\right) \\ $$$$\:=\:\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\frac{{r}^{\mathrm{2}} }{\mathrm{3}}−\frac{{r}^{\mathrm{2}} }{\mathrm{4}}}{\frac{\mathrm{1}}{\mathrm{6}}{r}^{\mathrm{2}} }\right)=\:\mathrm{6}×\left(\frac{\mathrm{4}−\mathrm{3}}{\mathrm{12}}\right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by CElcedricjunior last updated on 18/Jul/22
$$−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$…..{le}\:{celebre}\:{cedric}\:{junior}…… \\ $$
Answered by Mathspace last updated on 18/Jul/22
$${f}\left({x}\right)=\frac{\mathrm{3}}{\mathrm{1}−\sqrt{{x}}}−\frac{\mathrm{2}}{\mathrm{1}−^{\mathrm{3}} \sqrt{{x}}} \\ $$$${we}\:{do}\:{the}\:{cha}\mathrm{7}{gement}\:{x}=\mathrm{1}−{t} \\ $$$$\left({so}\:{t}\rightarrow\mathrm{0}\right)\:\Rightarrow \\ $$$${f}\left({x}\right)={f}\left(\mathrm{1}−{t}\right)=\frac{\mathrm{3}}{\mathrm{1}−\sqrt{\mathrm{1}−{t}}}−\frac{\mathrm{2}}{\mathrm{1}−^{\mathrm{3}} \sqrt{{x}}} \\ $$$$\left(\mathrm{1}+{u}\right)^{\alpha} \sim\mathrm{1}+\alpha{u}\:+\frac{\alpha\left(\alpha−\mathrm{1}\right)}{\mathrm{2}}{u}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−{u}\right)^{\alpha} \sim\mathrm{1}−\alpha{u}+\frac{\alpha\left(\alpha−\mathrm{1}\right)}{\mathrm{2}}{u}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \sim\mathrm{1}−\frac{{t}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{8}}{t}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \sim\mathrm{1}−\frac{{t}}{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{18}}{t}^{\mathrm{2}} \\ $$$$\Rightarrow{f}\left(\mathrm{1}−{t}\right)\sim\frac{\mathrm{3}}{\frac{{t}}{\mathrm{2}}+\frac{{t}^{\mathrm{2}} }{\mathrm{8}}}−\frac{\mathrm{2}}{\frac{{t}}{\mathrm{3}}+\frac{{t}^{\mathrm{2}} }{\mathrm{9}}} \\ $$$$=\frac{\mathrm{24}}{\mathrm{4}{t}+{t}^{\mathrm{2}} }−\frac{\mathrm{18}}{\mathrm{3}{t}+{t}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{24}\left(\mathrm{3}{t}+{t}^{\mathrm{2}} \right)−\mathrm{18}\left(\mathrm{4}{t}+{t}^{\mathrm{2}} \right)}{\left(\mathrm{4}{t}+{t}^{\mathrm{2}} \right)\left(\mathrm{3}{t}+{t}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{72}{t}+\mathrm{24}{t}^{\mathrm{2}} −\mathrm{72}{t}−\mathrm{18}{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} \left(\mathrm{4}+{t}\right)\left(\mathrm{3}+{t}\right)} \\ $$$$=\frac{\mathrm{6}}{\left(\mathrm{4}+{t}\right)\left(\mathrm{3}+{t}\right)}\rightarrow\frac{\mathrm{6}}{\mathrm{12}}=\frac{\mathrm{1}}{\mathrm{2}}\left({t}\rightarrow\mathrm{0}\right) \\ $$