Menu Close

Question-173765




Question Number 173765 by saly last updated on 17/Jul/22
Answered by cortano1 last updated on 18/Jul/22
 L = lim_(x→1)  ((3/(1−(√x))) − (2/(1−(x)^(1/3) )) )=?   [ let x = t^6  ∧ t→1 ]   L= lim_(t→1)  ((3/(1−t^3 )) − (2/(1−t^2 )) )        = lim_(t→1) ((3/((1−t)(1+t+t^2 ))) −(2/((1−t)(1+t))))       = lim_(t→1) (((3t+3−2t^2 −2t−2)/((1−t)(1+t)(1+t+t^2 ))))       = (1/6)×lim_(t→1) (((−(t−1)(2t+1))/(−(t−1))))      = (1/6)×3 = (1/2)
L=limx1(31x21x3)=?[letx=t6t1]L=limt1(31t321t2)=limt1(3(1t)(1+t+t2)2(1t)(1+t))=limt1(3t+32t22t2(1t)(1+t)(1+t+t2))=16×limt1((t1)(2t+1)(t1))=16×3=12
Commented by saly last updated on 18/Jul/22
Thank you
Thankyou
Answered by blackmamba last updated on 18/Jul/22
 set x−1 =r ∧ r→0   = lim_(r→0) ((3/(1−(√(1+r)))) −(2/(1−((1+r))^(1/3) )))   = lim_(r→0) (((3(1−((1+r))^(1/3) )−2(1−(√(1+r))))/((1−(√(1+r)))(1−((1+r))^(1/3) ))))    =lim_(r→0) (((3(1−(1+(r/3)−(1/9)r^2 ))−2(1−(1+(1/2)r−(1/8)r^2 )))/((1−(1+(1/2)r))(1−(1+(1/3)r))))   = lim_(r→0) (((3(−(r/3)+(r^2 /9))−2(−(r/2)+(r^2 /8)))/((−(1/2)r)(−(1/3)r))))   = lim_(r→0)  ((((r^2 /3)−(r^2 /4))/((1/6)r^2 )))= 6×(((4−3)/(12)))= (1/2)
setx1=rr0=limr0(311+r211+r3)=limr0(3(11+r3)2(11+r)(11+r)(11+r3))=limr0(3(1(1+r319r2))2(1(1+12r18r2))(1(1+12r))(1(1+13r))=limr0(3(r3+r29)2(r2+r28)(12r)(13r))=limr0(r23r2416r2)=6×(4312)=12
Answered by CElcedricjunior last updated on 18/Jul/22
−(1/2)  .....le celebre cedric junior......
12..lecelebrecedricjunior
Answered by Mathspace last updated on 18/Jul/22
f(x)=(3/(1−(√x)))−(2/(1−^3 (√x)))  we do the cha7gement x=1−t  (so t→0) ⇒  f(x)=f(1−t)=(3/(1−(√(1−t))))−(2/(1−^3 (√x)))  (1+u)^α ∼1+αu +((α(α−1))/2)u^2   (1−u)^α ∼1−αu+((α(α−1))/2)u^2   (1−t)^(1/2) ∼1−(t/2)−(1/8)t^2   (1−t)^(1/3) ∼1−(t/3)−(2/(18))t^2   ⇒f(1−t)∼(3/((t/2)+(t^2 /8)))−(2/((t/3)+(t^2 /9)))  =((24)/(4t+t^2 ))−((18)/(3t+t^2 ))  =((24(3t+t^2 )−18(4t+t^2 ))/((4t+t^2 )(3t+t^2 )))  =((72t+24t^2 −72t−18t^2 )/(t^2 (4+t)(3+t)))  =(6/((4+t)(3+t)))→(6/(12))=(1/2)(t→0)
f(x)=31x213xwedothecha7gementx=1t(sot0)f(x)=f(1t)=311t213x(1+u)α1+αu+α(α1)2u2(1u)α1αu+α(α1)2u2(1t)121t218t2(1t)131t3218t2f(1t)3t2+t282t3+t29=244t+t2183t+t2=24(3t+t2)18(4t+t2)(4t+t2)(3t+t2)=72t+24t272t18t2t2(4+t)(3+t)=6(4+t)(3+t)612=12(t0)

Leave a Reply

Your email address will not be published. Required fields are marked *