Menu Close

Question-173834




Question Number 173834 by mnjuly1970 last updated on 19/Jul/22
Commented by infinityaction last updated on 20/Jul/22
f(x)g(x)h(x) = (tan^7 x+cot^7 x)(tan^8 x−cot^8 x)                                 ×  (tan^9 x+cot^9 x)   F(x) = (tan^(15) x−cotx+tanx−cot^(15) x)(tan^9 +cot^9 x)        F(x)= tan^(24) x−tan^8 x+tan^(10) x−cot^6 x              + tan^6 x−cot^(10) x+cot^8 x−cot^(24) x  F ′(x) = 24tan^(23) xsec^2 x−8tan^7 xsec^2 x        + 10tan^9 xsec^2 x+6cot^5 xcosec^2 x         + 6tan^5 xsec^2 x+10cot^9 xcosec^2 x−     8cot^7 xcosec^2 x +24cot^(23) xcosec^2 x  F ′(x) = 48−16+20+12+12+20−16+48               F^  ′(x) =    128
f(x)g(x)h(x)=(tan7x+cot7x)(tan8xcot8x)×(tan9x+cot9x)F(x)=(tan15xcotx+tanxcot15x)(tan9+cot9x)F(x)=tan24xtan8x+tan10xcot6x+tan6xcot10x+cot8xcot24xF(x)=24tan23xsec2x8tan7xsec2x+10tan9xsec2x+6cot5xcosec2x+6tan5xsec2x+10cot9xcosec2x8cot7xcosec2x+24cot23xcosec2xF(x)=4816+20+12+12+2016+48Prime causes double exponent: use braces to clarify
Commented by Tawa11 last updated on 19/Jul/22
Great sirs
Greatsirs
Answered by mahdipoor last updated on 19/Jul/22
P (x)=P_(a,±) (x)=tan^a (x)±cot^a (x)  (dP/dx)=a(tan^(a−1) (x).(1/(cos^2 x))∓cot^(a−1) (x).(1/(sin^2 x)))  ⇒ { ((P(θ)=1±1)),((P^( ′) (θ)=2a(1∓1))) :}      get  θ=π/4  f ≡ P_(7,+)  ⇒f(θ)=2     D_x f(θ)=0  g ≡ P_(8,−)  ⇒g(θ)=0     D_x g(θ)=32  h ≡ P_(7,+)  ⇒h(θ)=2     D_x h(θ)=0  (dF/dx)(θ)=(d/dx)(fgh)(θ)=(f^( ′) gh+fg^( ′) h+fgh^( ′) )(θ)=  0+2×32×2+0=128
P(x)=Pa,±(x)=tana(x)±cota(x)dPdx=a(tana1(x).1cos2xcota1(x).1sin2x){P(θ)=1±1P(θ)=2a(11)getθ=π/4fP7,+f(θ)=2Dxf(θ)=0gP8,g(θ)=0Dxg(θ)=32hP7,+h(θ)=2Dxh(θ)=0dFdx(θ)=ddx(fgh)(θ)=(fgh+fgh+fgh)(θ)=0+2×32×2+0=128
Commented by mnjuly1970 last updated on 19/Jul/22
    very nice  mamnon ostad
verynicemamnonostad
Commented by mahdipoor last updated on 20/Jul/22
lotf darid ostad :)
lotfdaridostad:)
Answered by mr W last updated on 20/Jul/22
F(x)=f(x)g(x)h(x)  ln F(x)=ln f(x)+ln g(x)+ln h(x)  ((F′(x))/(F(x)))=((f′(x))/(f(x)))+((g′(x))/(g(x)))+((h′(x))/(h(x)))  F′(x)=g(x)h(x)f′(x)+f(x)h(x)g′(x)+f(x)g(x)h′(x)  f((π/4))=h((π/4))=2  g((π/4))=0  F′((π/4))=f((π/4))h((π/4))g′((π/4))=4×g′((π/4))  =4×[((8 tan^7  x)/(cos^2  x))+((8 cot^7  x)/(sin^2  x))]_(x=(π/4))   =32×[(1/(1/2))+(1/(1/2))]  =32×4=128
F(x)=f(x)g(x)h(x)lnF(x)=lnf(x)+lng(x)+lnh(x)F(x)F(x)=f(x)f(x)+g(x)g(x)+h(x)h(x)F(x)=g(x)h(x)f(x)+f(x)h(x)g(x)+f(x)g(x)h(x)f(π4)=h(π4)=2g(π4)=0F(π4)=f(π4)h(π4)g(π4)=4×g(π4)=4×[8tan7xcos2x+8cot7xsin2x]x=π4=32×[112+112]=32×4=128
Commented by mnjuly1970 last updated on 20/Jul/22
   really nice solution master
reallynicesolutionmaster

Leave a Reply

Your email address will not be published. Required fields are marked *