Menu Close

Question-173836




Question Number 173836 by mathlove last updated on 19/Jul/22
Commented by aleks041103 last updated on 21/Jul/22
I=∫_(−2) ^(−1) (10(x^6 )^(1/4) −2x)dx=  =10∫_(−2) ^(−1) (x^6 )^(1/4) dx − ∫_(−2) ^(−1) 2xdx=  =10J−[x^2 ]_(−2) ^(−1) =16(√2)−(1−4)=3+16(√2)  x^6  is even⇒J=∫_(−2) ^(−1) (x^6 )^(1/4) dx=∫_1 ^( 2)  (x^6 )^(1/4) dx=∫_1 ^2 x^(3/2) dx=  =[(2/5)x^(5/2) ]_1 ^2 =((8(√2))/5)
I=21(10x642x)dx==1021x64dx212xdx==10J[x2]21=162(14)=3+162x6isevenJ=21x64dx=12x64dx=12x3/2dx==[25x5/2]12=825
Answered by CElcedricjunior last updated on 19/Jul/22
I=∫_(−2) ^(−1) (10(√x^3 )−2x)dx=∫_(−2) ^(−1) (10x^(3/2) −2x)dx  or (√x^3 )  n′est definie en [−2;−1]  alors I n′existe pas dans R  mais dansC
I=21(10x32x)dx=21(10x322x)dxorx3nestdefinieen[2;1]alorsInexistepasdansRmaisdansC
Answered by a.lgnaoui last updated on 19/Jul/22
  I=10∫_(−2) ^(−1) x^(3/2) dx−2∫xdx  I=10[(x^((3/2)+1) /((3/2)+1))]_(−2) ^(−1) −2[(x^2 /2)]_(−2) ^(−1) =4[x^2 (√x) ]_(−2) ^(−1) −[x^2 ]_(−2) ^(+1)     =[x^2 (4(√x)−1)]_(−2) ^(−1)     x<0⇒(√x)=(√(∣x∣i^2 ))=i(√(∣x∣))   I=[x^2 (4i(√(∣x∣))−1)]_(−2) ^(−1) =4i−1−16(√2)i+4  I=3+(4−16(√2))i=3−18,56i
I=1021x32dx2xdxI=10[x32+132+1]212[x22]21=4[x2x]21[x2]2+1=[x2(4x1)]21x<0x=xi2=ixI=[x2(4ix1)]21=4i1162i+4I=3+(4162)i=318,56i

Leave a Reply

Your email address will not be published. Required fields are marked *