Menu Close

Question-173874




Question Number 173874 by akolade last updated on 20/Jul/22
Answered by a.lgnaoui last updated on 21/Jul/22
I=∫_(π/4) ^(15π/4) (sin xcos^2 x+3sin^2 xcos^2 x+4sin^5 xcos^2 x+2sin^3 x)dx=  cos^2 xsin^2 x (3+4sin^3 x)+(sinxcos^2 x+  2sin^3 x)=  (1/4)(sin2x)^2 (3+4sin^3 x)+sinx (1 +sin^2 x )=  (3/4)sin^2 (2x)+2sin^3 x+ sinx       I=(3/4)∫sin^2 (2x)dx+3∫sin^3 xdx+∫sin xdx  ∫sin^2 (2x)dx     u′=1⇒u=x     v=sin^2 (2x)⇒v′=2sin( 2x)cos(2x)=sin4x  ∫sin^2 (2x)dx=[xsin^2 (2x)]−(∫xsin4xdx  =[−(1/4)xcos4x]+ sin4x)    ⇒∫sin^2 2xdx=xsin^2 2x+(1/4)(xcos4x)−sin 4x   ∫(sin^3 x+sinx) dx= ∫sin x(1+sin^2 x)=−cos x(1+sin^2 x)−((cos 2x)/2)  I=(3/4)[xsin^2 2x]_(π/4) ^((15π)/4) +(3/(16))[xcos 4x]_(π/4) ^((15π)/4)  −(3/4)[ sin4x]_(π/4) ^((15π)/4)      −   [cos x(1+sin^2 x)]_(π/4) ^((15π)/4) +[((cos 2x)/2)]_(π/4) ^((15π)/4)   =(3/4)[ (((15π)/4)sin^2 (−(π/4)) −(π/4)sin^2 (π/4))]+[(3/(16)) (((15π)/4)cos( −π)−(π/4)cos π)]−(3/4)(sin 15π−sin π)      −[cos ((π/4))(1+sin^2 (π/4)) − (cos (π/4)(1+sin^2 (π/4) )]+((1/2)cos ((3π)/2)−(1/2)cos (π/2))     I   =((−49π)/(32))
I=π/415π/4(sinxcos2x+3sin2xcos2x+4sin5xcos2x+2sin3x)dx=cos2xsin2x(3+4sin3x)+(sinxcos2x+2sin3x)=14(sin2x)2(3+4sin3x)+sinx(1+sin2x)=34sin2(2x)+2sin3x+sinxI=34sin2(2x)dx+3sin3xdx+sinxdxsin2(2x)dxu=1u=xv=sin2(2x)v=2sin(2x)cos(2x)=sin4xsin2(2x)dx=[xsin2(2x)](xsin4xdx=[14xcos4x]+sin4x)sin22xdx=xsin22x+14(xcos4x)sin4x(sin3x+sinx)dx=sinx(1+sin2x)=cosx(1+sin2x)cos2x2I=34[xsin22x]π415π4+316[xcos4x]π415π434[sin4x]π415π4[cosx(1+sin2x)]π415π4+[cos2x2]π415π4=34[(15π4sin2(π4)π4sin2π4)]+[316(15π4cos(π)π4cosπ)]34(sin15πsinπ)[cos(π4)(1+sin2π4)(cosπ4(1+sin2π4)]+(12cos3π212cosπ2)I=49π32

Leave a Reply

Your email address will not be published. Required fields are marked *