Question Number 173933 by mathlove last updated on 21/Jul/22
Commented by cortano1 last updated on 21/Jul/22
$$=\mathrm{1} \\ $$
Answered by som(math1967) last updated on 21/Jul/22
$$\frac{\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\mathrm{2}}}{\mathrm{1}+\sqrt{\frac{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{4}}}}\:+\frac{\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\mathrm{2}}}{\mathrm{1}−\sqrt{\frac{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{4}}}} \\ $$$$=\frac{\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\mathrm{2}}}{\frac{\mathrm{2}+\sqrt{\left(\sqrt{\mathrm{3}}+\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{2}}}\:+\frac{\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\mathrm{2}}}{\frac{\mathrm{2}−\sqrt{\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\mathrm{3}+\sqrt{\mathrm{3}}}\:+\frac{\mathrm{2}−\sqrt{\mathrm{3}}}{\mathrm{3}−\sqrt{\mathrm{3}}} \\ $$$$=\frac{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\left(\mathrm{3}−\sqrt{\mathrm{3}}\right)+\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)\left(\mathrm{3}+\sqrt{\mathrm{3}}\right)}{\mathrm{9}−\mathrm{3}} \\ $$$$=\frac{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{3}+\mathrm{6}+\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{3}}{\mathrm{6}} \\ $$$$=\frac{\mathrm{12}−\mathrm{6}}{\mathrm{6}}=\mathrm{1} \\ $$
Commented by mathlove last updated on 22/Jul/22
$${thanks} \\ $$