Menu Close

Question-174377




Question Number 174377 by AgniMath last updated on 31/Jul/22
Answered by okbruh123 last updated on 31/Jul/22
ez telescoping lol  2 + (1/(3∙5))+...+(1/(11∙13))  2 + (1/2)(((5−3)/(3∙5))+...+((13−11)/(11∙13)))  2+(1/2)((1/3)−(1/5)+...+(1/(11))−(1/(13)))  2+(1/2)((1/3)−(1/(13)))=2+(1/2)(((10)/(39)))=2+(5/(39 )) now do basic maths
$$\mathrm{ez}\:\mathrm{telescoping}\:\mathrm{lol} \\ $$$$\mathrm{2}\:+\:\frac{\mathrm{1}}{\mathrm{3}\centerdot\mathrm{5}}+…+\frac{\mathrm{1}}{\mathrm{11}\centerdot\mathrm{13}} \\ $$$$\mathrm{2}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{5}−\mathrm{3}}{\mathrm{3}\centerdot\mathrm{5}}+…+\frac{\mathrm{13}−\mathrm{11}}{\mathrm{11}\centerdot\mathrm{13}}\right) \\ $$$$\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}+…+\frac{\mathrm{1}}{\mathrm{11}}−\frac{\mathrm{1}}{\mathrm{13}}\right) \\ $$$$\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{13}}\right)=\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{10}}{\mathrm{39}}\right)=\mathrm{2}+\frac{\mathrm{5}}{\mathrm{39}\:}\:\mathrm{now}\:\mathrm{do}\:\mathrm{basic}\:\mathrm{maths} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *