Question Number 174666 by mnjuly1970 last updated on 07/Aug/22
Answered by behi834171 last updated on 08/Aug/22
$$\boldsymbol{{cos}}\frac{\boldsymbol{{C}}}{\mathrm{2}}=\sqrt{\frac{\boldsymbol{{p}}\left(\boldsymbol{{p}}β\boldsymbol{{c}}\right)}{\boldsymbol{{ab}}}} \\ $$$$\boldsymbol{{cos}}^{\mathrm{2}} \boldsymbol{\Psi}=\mathrm{1}β\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{\Psi}=\mathrm{1}β\frac{\mathrm{4}\boldsymbol{{ab}}}{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }.\frac{\boldsymbol{{p}}\left(\boldsymbol{{p}}β\boldsymbol{{c}}\right)}{\boldsymbol{{ab}}}= \\ $$$$=\mathrm{1}β\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}\right)\left(\boldsymbol{{a}}+\boldsymbol{{b}}β\boldsymbol{{c}}\right)}{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }= \\ $$$$=\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} β\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} }{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }=\frac{\boldsymbol{{c}}^{\mathrm{2}} }{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }\Rightarrow \\ $$$$\boldsymbol{{cos}\Psi}=\frac{\boldsymbol{{c}}}{\boldsymbol{{a}}+\boldsymbol{{b}}}\:\:\:\:\:\:\:.\:\blacksquare \\ $$
Commented by mnjuly1970 last updated on 08/Aug/22
$${grateful}\:{sir} \\ $$